摘要
在模式识别中,如何在提取关键特征的同时对样本进行降维与识别是研究的热点之一。在局部Fisher判别分析(LFDA)的基础上,结合张量表示和稀疏分析,本文提出一种基于稀疏张量的特征提取方法:稀疏张量局部Fisher判别分析(STLFDA)。该方法把张量局部Fisher判别分析(TLFDA)算法中特征分解问题转化为线性回归问题,并用弹性网络解决线性回归中的特征选择问题,既满足了张量局部Fisher判别分析的目标,又保证了得到的投影矩阵的稀疏性。通过在Weizmann人体行为数据库上的实验,表明了稀疏张量局部Fisher判别分析(STLFDA)算法的有效性。
In pattern recognition,how to reduce the dimension and identify the samples while extracting the key features is one of research hotspots.Based on local Fisher discriminant analysis(LFDA),this paper proposes a feature extraction method combining tensor representation with sparse analysis:Sparse Tensor Local Fisher s Discriminant Analysis(STLFDA).This method transforms the feature decomposition problem in tensor local Fisher discriminant analysis(TLFDA)algorithm into linear regression problem,and solves the feature selection problem in linear regression with elastic network.It not only satisfies the goal of the Tensor Local Fisher Discriminant Analysis,but also guarantees the sparsity of the projection matrix.The validity of STLFDA algorithm is demonstrated by experiments on the Weizmann human behavior database.
作者
卢雨彤
韩立新
LU Yu-tong;HAN Li-xin(College of Computer and Information,Hohai University,Nanjing 210000,China)
出处
《计算机与现代化》
2020年第3期121-126,共6页
Computer and Modernization
关键词
局部Fisher判别分析
稀疏分析
张量表示
弹性网络
local Fisher discriminant analysis
sparse analysis
tensor representation
elastic network