期刊文献+

基于稀疏张量判别分析的人体行为识别 被引量:1

Human Behavior Recognition Based on Sparse Tensor Discriminant Analysis
下载PDF
导出
摘要 在模式识别中,如何在提取关键特征的同时对样本进行降维与识别是研究的热点之一。在局部Fisher判别分析(LFDA)的基础上,结合张量表示和稀疏分析,本文提出一种基于稀疏张量的特征提取方法:稀疏张量局部Fisher判别分析(STLFDA)。该方法把张量局部Fisher判别分析(TLFDA)算法中特征分解问题转化为线性回归问题,并用弹性网络解决线性回归中的特征选择问题,既满足了张量局部Fisher判别分析的目标,又保证了得到的投影矩阵的稀疏性。通过在Weizmann人体行为数据库上的实验,表明了稀疏张量局部Fisher判别分析(STLFDA)算法的有效性。 In pattern recognition,how to reduce the dimension and identify the samples while extracting the key features is one of research hotspots.Based on local Fisher discriminant analysis(LFDA),this paper proposes a feature extraction method combining tensor representation with sparse analysis:Sparse Tensor Local Fisher s Discriminant Analysis(STLFDA).This method transforms the feature decomposition problem in tensor local Fisher discriminant analysis(TLFDA)algorithm into linear regression problem,and solves the feature selection problem in linear regression with elastic network.It not only satisfies the goal of the Tensor Local Fisher Discriminant Analysis,but also guarantees the sparsity of the projection matrix.The validity of STLFDA algorithm is demonstrated by experiments on the Weizmann human behavior database.
作者 卢雨彤 韩立新 LU Yu-tong;HAN Li-xin(College of Computer and Information,Hohai University,Nanjing 210000,China)
出处 《计算机与现代化》 2020年第3期121-126,共6页 Computer and Modernization
关键词 局部Fisher判别分析 稀疏分析 张量表示 弹性网络 local Fisher discriminant analysis sparse analysis tensor representation elastic network
  • 相关文献

参考文献3

二级参考文献106

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 3Zhang D, Gatica-Perez D, Bengio S, et al. Modeling individual group actions in meetings: a two-layer HMM framework[A]. In: Proceedings of IEEE CVPR Workshop on Detection and Recognition of Events in Video[ C ] , Washington, DC, USA,2004 : 117-125.
  • 4Olivier N, Horovitz E, Garg A. Layered representations for human activity recognition [ A ] . In: Proceedings of IEEE International Conference on Muhimodal Interfaces [ C ] , Pittsburgh, PA, USA, 2002 : 3-8.
  • 5Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks [ J ] . Computer Vision and Image Understanding, 2003, 92(2-3) : 196-216.
  • 6Du Y T, Chen F, Xu W L, et al. Recognizing interaction activities using dynamic Bayesian network [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], New York, USA. 2006: 618-621.
  • 7Buxton H, Gong S G. Advanced visual surveillance using Bayesian networks [ A ]. In: Proceedings of International Conference on Computer Vision [ C ] , Boston, MA, USA, 1995 : 111 - 123.
  • 8Oliver N, Horvitz E. A comparison of HMMs and dynamic Bayesian networks for recognizing office activities [ A ]. In: Proceedings of lOth International Conference on User Modeling [ C ] , Edinburgh, UK, 2005 : |99-209.
  • 9Sminchisescu C, Kanaujia A, Metaxas D. Conditional models for contextual human motion recognition [ J ]. Computer Vision and Image Understanding, 2006,104 ( 2-3 ) : 210-220.
  • 10Olival A, Torralba A. The role of context in object recognition[ J]. Trends in Cognitive Sciences, 2007,11(12) : 520-527.

共引文献97

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部