期刊文献+

PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance 被引量:6

PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance
下载PDF
导出
摘要 CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone(PVP) and polyvinyl alcohol(PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake(from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine(PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite(TFC) membrane of the optimized blend(50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone(PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes. CO2 separation performance in facilitated transport membranes has been reported depended not only on the CO2 carrier properties but also to a great extent on the polymeric matrix regarding the capacity of retaining water and carriers as well as the processability for coating defect-free ultra-thin films. In this study, the blends of hydrophilic polymers polyvinyl pyrrolidone(PVP) and polyvinyl alcohol(PVA) were studied to find an optimal polymer matrix to host carriers in facilitated transport membranes for enhanced CO2 separation. It is found out that the optimized blend is 50/50 PVA/PVP by weight, which shows a significant increase in the water uptake(from 63 to 84%) at equilibrium state compared to the neat PVA. Polyethyleneimine(PEI) was employed to provide sample carriers to evaluate the synergistic effect of PVA and PVP on the CO2 separation performance. A thin film composite(TFC) membrane of the optimized blend(50/50 PVA/PVP with 50 wt% PEI) was fabricated on polysulfone(PSf) porous support. The fabrication of the TFC membranes is simple and low cost, and CO2 permeance of the optimized blend membrane is nearly doubled with the CO2/N2 selectivity remained unchanged, showing great potential for industrial applications of the resulted membranes.
出处 《Green Energy & Environment》 CSCD 2020年第1期59-68,共10页 绿色能源与环境(英文版)
基金 the Norwegian Research Council for the financial support to this work through the Nano2021 program (project number 239172)
关键词 TFC membrane Facilitated transport CO2 separation Polyvinyl alcohol Polyvinyl pyrrolidone TFC membrane Facilitated transport CO2 separation Polyvinyl alcohol Polyvinyl pyrrolidone
  • 相关文献

同被引文献16

引证文献6

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部