期刊文献+

Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed 被引量:3

Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed
下载PDF
导出
摘要 Strigolactones(SLs)are newly discovered plant hormones which regulate the normal development of different plant organs,especially root architecture.Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield.Here,we treated the seedlings of Zhongshuang 11(ZS11),an elite conventional rapeseed cultivar,with different concentrations of GR24(a synthetic analogue of strigolactones),and found that a low concentration(0.18μmol L–1)of GR24 could significantly increase the lateral root growth,shoot growth,and root/shoot ratio of seedlings.RNA-Seq analysis of lateral roots at 12 h,1 d,4 d,and 7 d after GR24 treatment showed that 2301,4626,1595,and 783 genes were significantly differentially expressed,respectively.Function enrichment analysis revealed that the plant hormone transduction pathway,tryptophan metabolism,and the phenylpropanoid biosynthesis pathway were over-represented.Moreover,transcription factors,including AP2/ERF,AUX/IAA,NAC,MYB,and WRKY,were up-regulated at 1 d after GR24 treatment.Metabolomics profiling further demonstrated that the amounts of various metabolites,such as indole-3-acetic acid(IAA)and cis-zeatin were drastically altered.In particular,the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8%at 12 h and 1 d after GR24 treatment,respectively.Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones,which provides useful clues for the effects of SLs on root architecture and crop productivity. Strigolactones(SLs) are newly discovered plant hormones which regulate the normal development of different plant organs, especially root architecture. Lateral root formation of rapeseed seedlings before winter has great effects on the plant growth and seed yield. Here, we treated the seedlings of Zhongshuang 11(ZS11), an elite conventional rapeseed cultivar, with different concentrations of GR24(a synthetic analogue of strigolactones), and found that a low concentration(0.18 μmol L–1) of GR24 could significantly increase the lateral root growth, shoot growth, and root/shoot ratio of seedlings. RNA-Seq analysis of lateral roots at 12 h, 1 d, 4 d, and 7 d after GR24 treatment showed that 2 301, 4 626, 1 595, and 783 genes were significantly differentially expressed, respectively. Function enrichment analysis revealed that the plant hormone transduction pathway, tryptophan metabolism, and the phenylpropanoid biosynthesis pathway were over-represented. Moreover, transcription factors, including AP2/ERF, AUX/IAA, NAC, MYB, and WRKY, were up-regulated at 1 d after GR24 treatment. Metabolomics profiling further demonstrated that the amounts of various metabolites, such as indole-3-acetic acid(IAA) and cis-zeatin were drastically altered. In particular, the concentrations of endogenous IAA significantly decreased by 52.4 and 75.8% at 12 h and 1 d after GR24 treatment, respectively. Our study indicated that low concentrations of exogenous SLs could promote the lateral root growth of rapeseed through interaction with other phytohormones, which provides useful clues for the effects of SLs on root architecture and crop productivity.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第2期465-482,共18页 农业科学学报(英文版)
基金 Funds were provided by the National Key Research and Development Program of China (2018YFD1000900)
关键词 rapeseed(Brassica napus L.) STRIGOLACTONES lateral root growth RNA-SEQ metabolic profiling analysis rapeseed(Brassica napus L.) strigolactones lateral root growth RNA-Seq metabolic profiling analysis
  • 相关文献

参考文献3

二级参考文献109

  • 1Aguilar-Martfnez, J,A., Poza-Carri6n, C., and Cubas, R (2007). Arabidopsis BRANCHEDI acts as an integrator of branching sig- nals within axillary buds. Plant Cell. 19, 458-472.
  • 2Agusti, J., Herold, S., Schwarz, M., Sanchez, R, Ljung, K., Dun, E. A., Brewer, RB., Beveridge, C. A., Sieberer, T., Sehr, E.M., et al. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc. Natl Acad. Sci. U S A. 108, 20242-20247.
  • 3Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquit- erpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435, 824-827.
  • 4Akiyama, K., Ogasawara, S., Ito, S., and Hayashi, H. (2010). Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104-1117.
  • 5Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, R, and AI-Babili, S. (2012). The path from carotene to carlactone, a strigolac- tone-like plant hormone. Science. 335, 1348-1351.
  • 6Arite, 1"., Iwata, H., Ohshima, K., Maekawa, M., Nakajima, M., Kojima, M., Sakakibara, H., and Kyozuka, J. (2007). DWARFIO, an RMSI/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J. 51, 1019-1029.
  • 7Arite, T., Umehara, M., Ishikawa, S., Hanada, A., Maekawa, M., Yamaguchi, S., and Kyozuka, J. (2009). d14, a strigolactone- insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol. 50, 1416-1424.
  • 8Balla, J., Kalousek, P., Reinehl, V., Friml, J., and Prochzka, S. (2011). Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J. 65, 571-577.
  • 9Bates, T.R., and Lynch, J.R (2000). Plant growth and phospho- rus accumulation of wild type and two root hair mutants of Arabidopsb thaliana (Brassicaceae). Am. J. Bot. 87, 958-963.
  • 10Bennett, T., Sieberer, T., Willett, B., Booker, J., Luschnig, C., and Leyser, O. (2006). The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553-563.

共引文献248

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部