期刊文献+

Design and fabrication of a new fluorescence enhancement system of silver nanoparticles-decorated aligned silver nanowires 被引量:5

Design and fabrication of a new fluorescence enhancement system of silver nanoparticles-decorated aligned silver nanowires
原文传递
导出
摘要 A new substrate,aligned Ag nanowires decorated with silver nanoparticle composite structure(AgNWs@AgNPs),was fabricated to investigate metalenhanced fluorescence(MEF) and its mechanism.The new composite structure was fabricated via a three-phase interface assembly method followed by SnCl2 sensitization and AgNO3 reduction process.The size and distribution of the nanoparticles on silver nanowires increased with the sensitization and reduction cycles.The formation of AgNPs on the surfaces of AgNWs was confirmed by multiple characterization methods including scanning electron microscopy(SEM),transmission electron microscope(TEM),atomic force microscopy(AFM) and X-ray diffraction(XRD).The results show that the fluorescence intensity of the poly(3-hexylthiophene)(P3HT) on the composite structure was greatly enhanced compared with that on bare glass substrate,and the intensity increased with the increase in particle sizes and density.The mechanism was basedo n the increase in excitation rate and the radiation decay rate.The new type of substrate could serve as a good and efficient MEF substrate for high-performance fluorescence-based devices. A new substrate,aligned Ag nanowires decorated with silver nanoparticle composite structure(AgNWs@AgNPs),was fabricated to investigate metalenhanced fluorescence(MEF) and its mechanism.The new composite structure was fabricated via a three-phase interface assembly method followed by SnCl2 sensitization and AgNO3 reduction process.The size and distribution of the nanoparticles on silver nanowires increased with the sensitization and reduction cycles.The formation of AgNPs on the surfaces of AgNWs was confirmed by multiple characterization methods including scanning electron microscopy(SEM),transmission electron microscope(TEM),atomic force microscopy(AFM) and X-ray diffraction(XRD).The results show that the fluorescence intensity of the poly(3-hexylthiophene)(P3HT) on the composite structure was greatly enhanced compared with that on bare glass substrate,and the intensity increased with the increase in particle sizes and density.The mechanism was basedo n the increase in excitation rate and the radiation decay rate.The new type of substrate could serve as a good and efficient MEF substrate for high-performance fluorescence-based devices.
出处 《Rare Metals》 SCIE EI CAS CSCD 2019年第12期1178-1186,共9页 稀有金属(英文版)
基金 financially supported by the National Natural Science Foundation of China (No.51273048) Science and Technology Planning Project of Guangdong Province (No.2017B090915004) the Open Operation of Guangdong Provincial Key Laboratory of Advanced Coatings Research and Development (No.2017B030314105)
关键词 Fluorescence enhancement Aligned Ag nanowires SELF-ASSEMBLY MECHANISM Fluorescence enhancement Aligned Ag nanowires Self-assembly Mechanism
  • 相关文献

参考文献1

同被引文献10

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部