期刊文献+

电磁场能量传输特性实验装置研究 被引量:2

Research on experimental instrument of electromagnetic energy transmission characteristic
下载PDF
导出
摘要 基于磁耦合谐振式无线电能传输仪研制出一套电磁场能量传输特性实验装置,用于研究不同介质中(空气、有机玻璃及不同盐度的海水)电磁场能量传输效率与频率、距离之间的关系。实验结果表明:在空气介质中,当负载为3Ω时,最大传输效率对应的频率由谐振频率92 kHz偏移至88 kHz;传输效率随距离的增加而减小。当传输距离为10 cm、驱动为3Ω负载时,5 mm厚有机玻璃中的传输效率较空气中提升了1.39%;不同盐度海水中,当盐度为35‰时,传输效率出现一个极大值。因此,利用此实验装置有助于无线电能传输效率的研究及电磁场传输相关领域的研究。 In order to study the relationship between the transmission efficiency and frequency and distance of electromagnetic energy in different media(air, organic glass and seawater with various salinities), an experimental instrument of electromagnetic energy transmission characteristic based on magnetically-coupled resonant wireless power transfer system was developed. The results show that the frequency corresponding to maximum transmission efficiency is offset from the resonant frequency 92 kHz to 88 kHz and the transmission efficiency decreases with increasing distance when the load is resistance of 3 Ω in the air medium. When the distance is fixed at 10 cm and the load is kept resistance of 3 Ω, the transmission efficiency in organic glass is 1.39% higher than that of air. With the different salinity in seawater, a maximum value of transmission efficiency appears at 35‰ salinity. Thus, the experimental instrument can be used to study the wireless power transfer efficiency and the related fields of electromagnetic transmission.
作者 卢忠 胡睿 赵英鹏 徐卓锴 LU Zhong;HU Rui;ZHAO Yingpeng;XU Zhuokai(College of Science,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《浙江工业大学学报》 CAS 北大核心 2020年第1期63-67,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(NSFC61705197) 浙江省大学生科技创新项目(2018R403020) 2016,2017年度浙江工业大学创新性实验项目(SYXM1740)的资助
关键词 电磁场 介质 效率 实验装置 electromagnetic field medium efficiency experimental instrument
  • 相关文献

参考文献3

二级参考文献26

  • 1Zhang Xian, Yang Qingxin, Chen Haiyan, et al. Analysis of a novel near-field non-radiative wireless power transmission systemiC]//2011 International Conference on Control, Automation and Systems Engineering (CASE 2011). Singapore: IEEE, 2011: 1-4.
  • 2Karalis A, Joannopoulos J D, Soljacic M. Efficient wireless non-radiative mid-range energy transfer [J]. Annals of Physics January Special Issue 2008, 323(1): 34-48.
  • 3Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances [J]. Science, 2007, 317(5834): 83-86.
  • 4Sample A P, Yeager D J, Powledge P S, et al. Design of an RFID-based battery-free programmable sensing platform[J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(11): 2608-2615.
  • 5Sample A P, Meyer D T, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Transactions on Industrial and Electronics, 2011, 58(2): 544-554.
  • 6Takehiro I, Hiroyuki O, Toshiyuki U, et al. Wireless power transfer during displacement using electromagnetic coupling in resonance[J]. IEEE Transactions on IndustryApplications, 2010, 130(1): 76-83.
  • 7Beh T C, Imura T, Kato M, et al. Basic study of improving efficiency of wireless power transfer via magnetic resonance coupling based on impedance matching [C]//2010 IEEE International Symposium on Industrial Electronics (ISIE2010). Bari: IEEE, 2010: 2011-2016.
  • 8Imura T, Okabe H, Hori Y. helical antennas of wireless Basic experimental study on power transfer for Electric Vehicles by using magnetic resonant couplings[C]//IEEE Vehicle Power and Propulsion Conference, 2009(VPPC '09). Dearborn: IEEE, 2009: 936-940.
  • 9Nilsson J W. Electrical circuits[M]. 4th ed. Reading, MA: Addison-Wesley, 1993: 358-390.
  • 10Stratton J A. Electromagnetic theory[M]. New York: McGraw-Hill, 1941: 90-105.

共引文献135

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部