期刊文献+

考虑个体差异的系统退化建模与半Markov过程维修决策 被引量:3

System degradation modeling with individual differences and maintenance decision based on semi-Markov process
下载PDF
导出
摘要 为了在采样不完全、个体差异明显的条件下对缓慢退化系统的维修策略进行研究,针对具有个体差异的缓慢退化系统,选择线性混合效应模型进行退化建模,并利用自回归方法对模型残差中的时间序列相关性进行调节,提高了模型的准确性。在此基础上构造合理的状态空间和维修决策空间,求解退化过程的状态转移概率,并使用策略迭代算法求解最小化单位时间长期预计成本的最优化维修策略。以激光退化实际案例求解了基于半Markov决策过程的维修策略,并与经典的基于役龄的维修策略和周期检查的维修策略进行比较,证明了所提方法能够更加精确地刻画系统的退化过程,并可帮助制定兼顾成本与可靠性的维修策略。 To study the maintenance strategy of slow degradation system under the condition of incomplete sampling and individual differences,a linear mixed effect model was employed to model the slow degradation system with individual differences,and autoregressive method was used to adjust the correlation of time series in the model residuals,which had improved the accuracy of model.On this basis,a reasonable state space and maintenance decision space were constructed to solve the state transition probability of degradation process,and the optimal maintenance strategy was solved by using policy iteration algorithm to minimize the long-term estimated cost per unit time.The maintenance strategy based on semi-Markov decision process was demonstrated by a practical case of laser degradation.Compared with the classical maintenance strategy based on service life and periodic inspection,the results showed that the proposed method could describe the degradation process more accurately and help to formulate maintenance strategy considering both cost and reliability.
作者 李琦 李婧 蒋增强 边靖媛 LI Qi;LI Jing;JIANG Zengqiang;BIAN Jingyuan(School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第2期331-339,共9页 Computer Integrated Manufacturing Systems
基金 北京市自然科学基金资助项目(9184030) 中央高校基本科研业务费专项资金资助项目(2019JBM053)~~
关键词 半MARKOV决策过程 缓慢退化系统 线性混合效应模型 策略迭代算法 semi-Markov decision process slow degradation system linear mixed-effects model policy iteration algorithm
  • 相关文献

参考文献3

二级参考文献25

  • 1ELLIS H,JIANG Mingxiang,COROTIS R B.Inspection,maintenance,and repair with partial observability[J].Journal of Infrastructure System,1995,1 (2):92-99.
  • 2CASSANDRA A R.A survey of POMDP applications[C]// Proceedings of the 3rd Annual Conference on Uncertainty in Artificial Intelligence(UAI-98).San Francisco,Cal.,USA:Morgan Kaufmann,1998:472-478.
  • 3KUO Y.Optimal adaptive control policy for joint machine maintenance and product quality control[J].European Journal of Operational Research,2006,171 (2):586-597.
  • 4IVY J S,NEMBHARD H B.A modeling approach to maintenance decisions using statistical quality control and optimization[J].Quality and Reliability Engineering International,2005,21(4):355-366.
  • 5HSU S P,ARAPOSTATHIS A.Safety control of partially observed MDPs with applications to machine maintenance problems[C]//Proceedings of IEEE International Conference on Systems,Man and Cybernetics.Hague,Netherlands:IEEE,2004:261-265.
  • 6STERN Z S,DAVID I,BIRANQ S.An efficient heuristic for a partially observable Markov decision process of machine replacement[J].Computers and Operations Research,1997,24(2):117-126.
  • 7PINEAU J,GORDON G,THUN S.Anytime point-based approximations for large POMDPs[J].Journal of Artificial Intelligence Research,2006,27:335-380.
  • 8PORTA J M,VLASSIS N,SPAAN M T J,et al.Point-based value iteration for continuous POMDPs[J].Journal of Mahine Learning Research,2006,7:2329-2367.
  • 9VLASSIS N,SPAAN M T J.A fast point-based algorithm for POMDPs[C]//Proceeding of Annual Machine Learning Conference of Belgium and the Netherlands.Brussels,Belgium:Benelearn,2004:170-176.
  • 10卞爱华,王崇骏,陈世福.基于点的POMDP算法的预处理方法[J].软件学报,2008,19(6):1309-1316. 被引量:6

共引文献16

同被引文献47

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部