期刊文献+

主理想环上一类矩阵对可同时三角化探讨

Study on Simultaneous Triangularization of a Class of Matrix Pair over the Ring of Principal Ideals
下载PDF
导出
摘要 矩阵的三角化是矩阵论的重要组成部分。关于交换环上矩阵对可同时三角化的问题已有许多研究成果。为探索将矩阵可同时三角化问题引入到主理想环研究中,将主理想环上矩阵可同时三角化问题作为研究对象,借助二次最小多项式,得到了一类矩阵在主理想环上对可同时三角化的一个充分且必要条件,同时得到了通过有限步验证程序,将矩阵对化简为下三角矩阵的一种方法,推广了有关矩阵可三角化理论的研究。 The triangulation of matrices is an important part of matrix theory.There are many research results on the simultaneous triangulation of matrix pairs on?the commutative ring.In order to explore the application of matrix simultaneous triangulation to the main ideal ring,the problem of matrix simultaneous triangulation on the main ideal ring was taken as the research object;a sufficient and necessary condition for simultaneous triangulation of a class of matrices over principal ideal rings was obtained by means of quadratic minimal polynomials.Meanwhile,by finite step verification program,a method to simplify the matrix pair to the lower triangular matrix was obtained,which extends the research on the triangulation of matrices.
作者 姜莲霞 邓勇 JIANG Lianxia;DENG Yong(College of Mathematics and Statistics,Kashi University,Kashi Xinjiang 844006,China)
出处 《安徽理工大学学报(自然科学版)》 CAS 2019年第6期61-64,共4页 Journal of Anhui University of Science and Technology:Natural Science
基金 新疆维吾尔自治区自然科学基金资助项目(2017D01A13)
关键词 主理想环 最小多项式 特征向量 三角化 交换子 the ring of principal ideal minimal polynomial eigenvector triangularization the commutator
  • 相关文献

参考文献11

二级参考文献48

  • 1施劲松,孙军,薛以锋.线性代数解题过程中的发散思维[J].大学数学,2006,22(1):120-123. 被引量:3
  • 2王炎生,陈宗基.基于系统矩阵实Schur分解的集结法模型降阶[J].自动化学报,1996,22(5):597-600. 被引量:5
  • 3Schmidt R O. Multiple Emitter Location and Signal Parameter Estimation[ J ]. IEEE Transations on Antennas and Propagation, 1986,34(3) :276 - 279.
  • 4Witzgall H E, Goldstein J S. Detection performance of the reduced- rank linear predictor ROCKET[ J ]. IEEE Transactions on Signal Processing, 2003,51(7):1731 - 1738.
  • 5Escot D, Poyatos D, Gonzalez I, et al. Application of particle swarm optimization(PSO) to single - snapshot direction of ar-rival(DOA) estimation[ C]//Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium. Madrid: IEEE, 2007: 5287 - 5290.
  • 6Wan Feng, Zhu Weiping, Swamy M N S. Spacial Extrapolation- Based Blind DOA Estimation Approach for Closely Spaced Sources [ J]. IEEE Transactions on Aerospace and Electronic Systems,2010,48 (2) :569 - 582.
  • 7杜先能,数学季刊,1990年,5卷,3期,97页
  • 8E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, etc., LAPACK Users Guide, 2nd edition.SIAM, Philadelphia, 1995.
  • 9L. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, etc., ScaLAPACK Users's Guide, SIAM, USA, 1997.
  • 10B.A. Hendrickson, D.E. Womble, The torus-wrap mapping for dense matrix calculation on massively parallel computers. SIAM Sci. Comput. 15:5 (1994) 1201-1226.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部