期刊文献+

基于新巴塞尔协议监管下保险人的均值-方差最优投资-再保险问题

Optimal Mean-Variance Investment-Reinsurance Problem with Constrained Controls by the New Basel Regulations for an Insurer
原文传递
导出
摘要 本文研究了均值-方差优化准则下,保险人的最优投资和最优再保险问题.我们用一个复合泊松过程模型来拟合保险人的风险过程,保险人可以投资无风险资产和价格服从跳跃-扩散过程的风险资产.此外保险人还可以购买新的业务(如再保险).本文的限制条件为投资和再保险策略均非负,即不允许卖空风险资产,且再保险的比例系数非负.除此之外,本文还引入了新巴塞尔协议对风险资产进行监管,使用随机二次线性(linear-quadratic,LQ)控制理论推导出最优值和最优策略.对应的哈密顿-雅克比-贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程不再有古典解.在粘性解的框架下,我们给出了新的验证定理,并得到有效策略(最优投资策略和最优再保险策略)的显式解和有效前沿. We study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance.The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process.In addition,the insurer can purchase new business(such as reinsurance).The controls(investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset.We control the risk by the new Basel regulation and use the stochastic linear-quadratic(LQ) control theory to derive the optimal value and the optimal strategy.The corresponding Hamilton-Jacobi-Bellman(HJB) equation no longer has a classical solution.With the framework of viscosity solution,we give a new verification theorem,and then the efficient strategy(optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.
作者 毕俊娜 李旻瀚 Jun Na BI;Min Han LI(Key Laboratory of Advanced Theory and Application in Statistics and Data Science-MOE,School of Statistics,East China Normal University,Shanghai 200241,P.R.China)
出处 《数学学报(中文版)》 CSCD 北大核心 2020年第1期61-76,共16页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(11571189,11871219,11871220,11901201) 111引智计划(B14019)
关键词 均值-方差准则 最优投资-再保险 新巴塞尔协议 HJB方程 验证定理 mean-variance portfolio selection optimal investment reinsurance new Basel regulation HJB equation verification theorem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部