期刊文献+

基于骨架提取的船舶航迹聚类技术研究 被引量:3

Research on ship track clustering based on skeleton extraction
下载PDF
导出
摘要 利用用于模型重构的骨架提取技术,对船舶历史数据进行轨迹聚类分析,为研究船舶行为模式奠定基础,进而对区域航行物监管提供新方法。针对目前轨迹聚类算法消耗计算资源大,无法快速处理航迹线的问题,将航迹线转换成图像进行梯度压缩和抽取聚类。依靠热力距离场构建航迹线的热曲面,后利用拉普拉斯算子对网格化的热曲面进行迭代收缩,得到剖面骨架线作为聚类效果图。通过获取我国东南沿海的船舶自动识别系统(Automatic Identification System,AIS)数据进行仿真实验,并可视化呈现。结果表明,将骨架提取技术应用到航迹聚类中,在达到预期聚类效果的情况下,可以避免处理大量的复杂雷达定位点数据,从而较大缩短聚类计算时间。 Using the skeleton extraction technology for model reconstruction,the trajectory clustering analysis of ship history data is carried out,which lays a foundation for the study of ship behavior pattern and provides a new method for the supervision of regional navigation objects.Aiming at the problem that the current track clustering algorithm consumes a lot of computational resources and cannot process track lines quickly,the trajectory is converted into an image for gradient compression and extraction clustering.The thermal surface of track line is constructed based on the thermal distance field,and then the meshed thermal surface is iteratively contracted by Laplace operator,and the skeleton line is obtained as the clustering effect.Simulation experiment is carried out by obtaining the data of Automatic Identification System(AIS)of ships in the southeast coast of China,and visual presentation is conducted.The results show that when the skeleton extraction technology is applied to the track clustering,the expected clustering effect can be achieved,and a large number of complex radar registration data can be avoided to reduce the clustering calculation time.
作者 刘岳豪 师本慧 LIU Yue-hao;SHI Ben-hui(The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《信息技术》 2020年第3期50-53,58,共5页 Information Technology
关键词 轨迹聚类 骨架提取 热力距离场 拉普拉斯算子 trajectory clustering skeleton extraction thermal distance field Laplace operator
  • 相关文献

参考文献3

二级参考文献88

  • 1王家耀,魏海平,成毅,熊自明.时空GIS的研究与进展[J].海洋测绘,2004,24(5):1-4. 被引量:67
  • 2杜国红,徐克虎,杜涛.平面非规则曲线的一种快速识别与匹配算法[J].计算机工程与应用,2007,43(7):81-83. 被引量:4
  • 3Hwang J R,Kang H Y,Li K J.Spatio-temporal similarity analysis between trajectories on road networks[C]//ER,2005:280-289.
  • 4Gaffney S,Smyth P.Trajectory clustering with mixtures of regression models[C]//Proc 5th ACM SIGKDD Int'l Conf on Knowledge Discovery and Data Mining,San Diego,California,Aug 1999:63-72.
  • 5Gaffney S,Robertson A,Smyth P,et al.Probabilistic clustering of extratropical cyclones using regression mixture models,UCI-ICS 06-02[R].University of California,Irvine,2006-01.
  • 6Kalnis P,Mamoulis N,Bakiras S.On discovering moving clusters in spatio-temporal data[M]//Advances in Spatial and Temporal Databases.Berlin/Heidelberg: Springer, 2005,3633.
  • 7Lee J G,Han J,Hwang K Y.Trajectory clustering:A partition and group framework[C]//SIGMOD'07,Beijing,China,June 2007.
  • 8Ankerst M,Breunig M M,Kriegel H P,et al.0PTICS:ordering points to identify the clustering structure [C]//Proc 1999 ACM SIGMOD Int'l Cord on Management of Data,Philadelphia,Pennsylvania, June 1999:49-60.
  • 9Nanni M,Pedreschi D.Time-focused clustering of trajectories of moving objects[J].J Intell Inf Syst,2006,27:267-289.
  • 10Li Yi-fan,Han Jia-wei,Yang Jiong.Clustering moving objects[C]// KDD' 04, Seattle, Washington, USA, August 2004.

共引文献67

同被引文献70

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部