期刊文献+

具有转移条件的向量型Sturm-Liouville问题的特征值重数及Ambarzumyan定理 被引量:1

On the Multiplicity of Eigenvalues of a Vectorial Sturm-Liouville Problem with Discontinuous Conditions and Related Ambarzumyan’s Theorem
原文传递
导出
摘要 研究了定义在有限区间内具有转移条件的m维向量型Sturm-Liouville问题.主要得到了该问题特征值重数的若干结论.证明了当矩阵值势函数Q满足一定的条件时,只能有有限个重数为m的特征值.作为重数结果的应用,证明了该问题的Ambarzumyan定理. The m-dimensional vectorial Sturm-Liouville problem with discontinuous conditions inside a finite interval is considered.We mainly obtain some conclusions about multiplicity of the eigenvalues based on the estimation of solutions.It is proved that,under certain conditions on potential matrix,the problem can only have a finite number of eigenvalues with multiplicity m.As an application,Ambarzumyan’s theorem is proved for the problem.
作者 刘肖云 史国良 闫军 LIU Xiaoyun;SHI Guoliang;YAN Jun(School of Mathematics and Physics,Anyang Institute of Technology,Anyang 455000,China;School of Mathematics,Tianjin University,Tianjin 300072,China)
出处 《应用数学学报》 CSCD 北大核心 2020年第1期33-48,共16页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11601372)资助项目
关键词 向量型Sturm-Liouville问题 转移条件 特征值重数 Ambarzumyan定理 vectorial Sturm-Liouville problems discontinuous boundary conditions multiplicity of eigenvalues Ambarzumyan’s theorem
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部