摘要
基于D^*-度量空间,首次引入次相容映象对和次序列连续映象对的概念,在去掉空间完备性的基础上证明了4个次相容且相对连续自映象的公共不动点问题.所得结果丰富了D^*-度量空间的公共不动点理论.
Based on the complete D^*-metric spaces, the notions of mapping pair sub-compatibility are firstly put forward, then the existence and uniqueness of common fixed point for four self-mappings are discussed, some new fixed point theorems are proved, which improved several relative results largely.
作者
陶陶
薛西锋
TAO Tao;XUE Xi-feng(School of Mathematics,Northwest University,Xi’an 710127,China)
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第1期1-5,共5页
Journal of Yunnan University(Natural Sciences Edition)
基金
陕西省自然科学基金(202030009)
关键词
D^-度量空间
次相容
相对连续
次序列连续
公共不动点定理
D^*-metric spaces
sub-compatible
reciprocally continuous
sub-sequentially continuous
common fixed point theorems