期刊文献+

D~*-度量空间中次相容映象对的公共不动点定理 被引量:1

Some new fixed point theorems for pairs of sub-compatible maps in D~*-metric spaces
下载PDF
导出
摘要 基于D^*-度量空间,首次引入次相容映象对和次序列连续映象对的概念,在去掉空间完备性的基础上证明了4个次相容且相对连续自映象的公共不动点问题.所得结果丰富了D^*-度量空间的公共不动点理论. Based on the complete D^*-metric spaces, the notions of mapping pair sub-compatibility are firstly put forward, then the existence and uniqueness of common fixed point for four self-mappings are discussed, some new fixed point theorems are proved, which improved several relative results largely.
作者 陶陶 薛西锋 TAO Tao;XUE Xi-feng(School of Mathematics,Northwest University,Xi’an 710127,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期1-5,共5页 Journal of Yunnan University(Natural Sciences Edition)
基金 陕西省自然科学基金(202030009)
关键词 D^-度量空间 次相容 相对连续 次序列连续 公共不动点定理 D^*-metric spaces sub-compatible reciprocally continuous sub-sequentially continuous common fixed point theorems
  • 相关文献

参考文献3

二级参考文献30

  • 1杜荣川.多值伪压缩映射公共不动点的迭代逼近[J].云南大学学报(自然科学版),2004,26(B07):39-42. 被引量:1
  • 2王林,徐裕光.广义Lipschitz Φ-伪压缩映射不动点的Mann迭代逼近[J].云南大学学报(自然科学版),2004,26(B07):35-38. 被引量:3
  • 3HUANG L G, ZHANG X. Cone metric spaces and fixed point theorems of contractive mappings [ J ]. Math Anal Appl, 2007, 322(2) :1 468-1 476.
  • 4ABBAS M ,JUNGCK G. Common fixed piont results of nonmmuting mappings without continuity in cone metric spaces [ J ].Math Anal Appl,2008,341 ( 1 ) :416-420.
  • 5RADENOVIC S. Common fixed points under contractive conditions in cone metric spaces [ J ]. Comput Math Appl,2009,58 (6) :1 273-1 278.
  • 6REZAPOUR Sh, HAMLARANI R. Some notes on the paper" Cone metric spaces and fixed point theorems of contractive mappings"[ J]. Math Anal Appl,2008,345(2) :719-724.
  • 7KADELBURG Z,RADENOVIC S,RADENOVIC V. Remarks on quasi - contraction on a cone metric space [ J ]. Appl Math Lett,2009,22 (11 ) :1 674-1 679.
  • 8CHEN Chi-ming, CHANG Tong-hui. Common fixed piont theorems for a weaker Meir- Keeler type function in cone metric spaces [ J ]. Appl Math Lett,2010,23 ( 11 ) : 1 336-1 341.
  • 9ILIC D, RADENOVIC V. Common fixed points for maps on cone metric space [ J ]. Math Anal Appl,2008,341 (2) :876-882.
  • 10ILIC D, RAKOCEVIC V. Quasi - contraction on cone metric space [ J]. Appl Math Lett, 2009,22 (5) : 728-731.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部