期刊文献+

感染人数期望值估计及新增确诊人数趋势预测的概率模型 被引量:12

A probability model for estimating the expected number of the newly infected and predicting the trend of the diagnosed
下载PDF
导出
摘要 新型冠状病毒肺炎自2019年12月初出现在武汉后,2020年1月中下旬开始暴发并迅速在全国肆虐,2020年2月中旬后又在几十个国家和地区蔓延,科学有效地掌握疫情发展对于疫情管控至关重要.感染人数是评估疫情形势的重要指标,可以辅助决策者及时制定疫情管控措施.现利用新增确诊人数和新增感染人数存在互相推算的关系,采用极大似然估计方法求解得到全国(除湖北省)每日新增感染人数期望值的估计值,并引入Bootstrap方法给出相应的置信区间,进一步推算现有感染(未确诊)人数并预测新增确诊人数变化趋势,为返城复工提供数据分析支撑. After 2019 novel cornavirus disease(COVID-19) appeared in Wuhan in early December 2019,it broke out in mid-to-late January 2020 and quickly spread throughout the country.So far,it has spread in dozens of countries and regions,the scientific and efficient understanding of epidemic development is essential for prevention and control.The number of infected people is a key indicator for assessing the situation of the epidemic,helping decision-makers formulate policies in time.This paper uses the maximum likelihood estimation method to obtain estimators of the number of newly infected people across the country except Hubei province.Moreover,Bootstrap simulation enables us to obtain confidence intervals for the estimators.Based on these solutions of the model,we further calculate the number of existing infected but undiagnosed people and predict the trend of the newly diagnosed for the next few days,providing suggestions on returning to work.
作者 丁志伟 刘艳云 孔京 张洪 张一 戴彧虹 杨周旺 DING Zhiwei;LIU Yanyun;KONG Jing;ZHANG Hong;ZHANG Yi;DAI Yuhong;YANG Zhouwang(School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China;School of Mathematical Sciences,Peking University,Beijing 100871,China;Beijing Institute of Big Data Research,Beijing 100871,China;Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)
出处 《运筹学学报》 北大核心 2020年第1期1-12,共12页 Operations Research Transactions
基金 国家自然科学基金(Nos.71950011,11871447,71991464/71991460) 国家重点研发计划课题(No.2018AAA0101001)
关键词 新型冠状病毒 感染人数 极大似然估计 EM算法 BOOTSTRAP 2019 novel coronavirus number of the infected maximum likelihood estimation EM algorithm Bootstrap
  • 相关文献

参考文献4

二级参考文献32

  • 1刘畅,丁光宏,龚剑秋,王凌程,珂张迪.SARS爆发预测和预警的数学模型研究[J].科学通报,2004,49(21):2245-2251. 被引量:15
  • 2[1]Chan-Yeung M,Yu WC. Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region: case report [J]. BMJ, 2003,326 ( 7394 ): 850-852.
  • 3[2]Brookmeyer R, Gail MH. Minimum size of the acquired immunodeficiency syndrome (AIDS) epidemic in the United States[J]. Lancet,1986,2(8519): 1320-1322.
  • 4[3]Becker NG,Watson LF,Carlin JB. A method of non-parametric back-projection and its application to AIDS data [J]. Stat Med, 1991,10(10): 1527-1542.
  • 5[4]Chau PH,Yip PSF,Cui JS. Reconstructing the incidence of human immunodeficiency virus(HIV) in Hong Kong by using data from HIV positive tests and diagnoses of acquired immune deficiency syndrome[J]. J Roy Stat Soc C(Appl Statist), 2003,52(2):237-248.
  • 6[5]Cui J, Becker NG. Estimating HIV incidence using dates of both HIV and AIDS diagnoses [J]. Stat Med, 2000, 19 (9):1165-1177.
  • 7[6]Dempster AP,Laird NM,Rubin DB. Maximum likelihood from incomplete data via the EM algorithm[J]. J Roy Stat Soc B,1977,39 (1): 1-38.
  • 8[7]Silverman BW, Jones MC, Wilson JD. A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography[J]. J Roy Stat Soc B, 1990,52(3) :271-324.
  • 9[8]Day NE,Gore SM,McGee MA,et al. Predictions of the AIDS epidemic in the UK :the use of the back projection method[J].Philos T Roy Soc B,1989,325(1):123-134.
  • 10[9]Rosenberg PS, Gail MH. Back calculation of flexible linear models of the human immunodeficiency virus infection curve [J]. J Roy Stat Soc C(Appl Statist), 1991,40(2) :269-282.

共引文献1735

同被引文献94

引证文献12

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部