摘要
[目的/意义]针对传统企业竞争对手评价研究中数据源单一和评价指标片面性的不足,文章率先提出了基于多源信息融合的竞争对手评价方法。[方法/过程]基于顾客价值领先战略,从企业和消费者的视角出发,选取企业财务报表和电商平台上的消费者评论作为信息源。通过构建财务特征和情感特征,依托BP神经网络,分别建立基于财务特征和综合特征的竞争对手评价模型。[结果/结论]采用仿真实验对提出的方法进行验证,证明基于综合特征建立的模型相比基于单一财务特征的模型更有效。该方法为大数据背景下的企业竞争对手评价提供了一种新的研究思路。
[Purpose/significance]Due to the singleness of data source and inadequacy of evaluation indexes in traditional enterprise competitor evaluation research,this paper firstly puts forward the competitor evaluation method based on multi-source information fusion.[Method/process]Based on the strategy of customer value leadership,the financial statements and consumer reviews on the e-commerce platform are used as information sources from the perspective of enterprises and consumers.Then a comprehensive feature system is built by integrating financial features and emotional features.Subsequently,competitor evaluation models with financial features and comprehensive features are built based on BPNN respectively.[Result/conclusion]The proposed method is validated by simulation experiments,which indicates that the model with comprehensive features outperforms the model with pure financial features.The proposed approach provides a new research idea for the evaluation of enterprise competitors in big data environment.
出处
《情报理论与实践》
CSSCI
北大核心
2020年第2期61-65,60,共6页
Information Studies:Theory & Application
基金
国家自然科学基金项目“Web 2.0下全员有效参与竞争情报的行为形成机理及治理策略研究”(项目编号:71573107)
国家自然科学基金青年科学基金项目“基于已存知识重用的大数据分布式递进分类挖掘方法研究”(项目编号:61702229)的阶段性成果
关键词
大数据
多源信息融合
竞争对手
情感分析
神经网络
big data
multi-source information fusion
competitor
sentiment analysis
neural network