期刊文献+

水位图像识别的场景问题处理方法和技术 被引量:11

Scene processing methods and technology for image recognition of water level
下载PDF
导出
摘要 水位图像识别系统基于人工智能图像识别技术,通过对水尺进行智能识别,直接获得水位的数值,但在实际应用中,由于受场景因素的干扰,稳定性大受影响。通过采用深度学习算法、多帧识别、曝光参数优化,以及摄像机硬件及光学的定制等多种手段相结合,解决各种场景因素的干扰,并在杭州之江水文站进行比测。比测结果表明,智能图像识别水尺系统满足水位观测标准中自记式水位计的要求,与传统水位测量相比,具有建设成本低、测量方式高效的优势,具有广阔的应用前景。 The image recognition system of water level is based on the artificial intelligence image recognition technology. Through the intelligent recognition of the stage gauge, the water level value is directly obtained. However, in practic, due to the interference of scene factors, the stability is greatly affected. In this paper, the interference in various scenes is solved by depth learning algorithm, multi frame recognition, exposure parameter optimization, and customizing the camera hardware and optics, etc. The comparative measurement are carried out at Zhijiang hydrometric station in Hangzhou. And the results of comparative measurement show that: the intelligent image recognition system of water level meets the requirements of water level recorders of the standard for stage observation. Comparing with the traditional water level measurement, it has the advantages of low construction cost and high efficiency, and has a broad application prospect.
作者 江海洋 刘林海 李红石 JIANG Haiyang;LIU Linhai;LI Hongshi(Zhejiang Province Hydrological Management Center,Hangzhou 310009,China;Hangzhou Hikvision Digital Technology Co.,Ltd,Hangzhou 310051,China)
出处 《水利信息化》 2020年第1期39-43,共5页 Water Resources Informatization
关键词 人工智能 图像识别 场景处理 深度学习 水位 监测 artificial intelligence image recognition scene processing deep learning water level monitoring
  • 相关文献

参考文献2

二级参考文献10

  • 1马涛,余春暄.数字图像处理在指针式指示表读数识别中的应用[J].微计算机信息,2004,20(7):50-51. 被引量:15
  • 2A. L. Rankin, L.H. Matthies , and A. Huertas. Daytime Water Detection By Fusing Multiple Cues For Autonomous Off-Road Navigation. Jet Propulsion Laboratory, 2004.
  • 3Larry Matthies, Paulo Belluta, Mike McHenry. Detecting water hazards for autonomous off-road navigation. Oak Grove Drive, Pasadena, CA, USA: Jet Propulsion Laboratory.
  • 4Alok Sarwal, Jeremy Nett , David Simon. Detection of small water-bodies [R].PercepTek Robotics 12395 N.Mead Way Littleton, CO 80125.
  • 5Brown L.G. A survey of image registration techniques.ACM, Computing Survey. 1992,12, 24(4).326-376.
  • 6HONG T H,TOMMY C,CHRISTOPHER R, et al.Feature Detection and Tracking for Mobile Robots Using a combination of Ladar and color Images [C]. Proceedings of the 2002 IEEE International Conference on Robotics Automation Washington, 2002.
  • 7何斌;马文予;王运坚.Visual C++数字图像处理[M]{H}北京:人民邮电出版社,20044-7.
  • 8冈萨雷斯.数字图像处理[M]北京:电子工业出版社,200518-20.
  • 9谢理训,杨宜民.基于改进区域生长算法的彩色图像分割[J].微计算机信息,2009,25(18):311-312. 被引量:6
  • 10胡方明,彭国华.Hough变换空间中基于直线的模板匹配[J].计算机工程,2011,37(10):140-142. 被引量:3

共引文献27

同被引文献149

引证文献11

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部