期刊文献+

基于BP-AdaBoost神经网络的多参数掌静脉图像质量评价法 被引量:5

Multi-Parameter Palm Vein Image Quality Evaluation Method Based on BP-AdaBoost Neural Network
下载PDF
导出
摘要 手掌静脉纹识别技术作为新一代高精度的生物特征识别技术,被广泛用于个人身份鉴定领域.然而,其识别效果受限于图像的质量,低质量的图像往往造成识别准确度偏低,如何有效的对图像质量进行评价从而筛选出高质量的图像成为掌静脉识别技术中的一项重要研究内容.本文旨在解决这一问题,提出了一种基于BP-AdaBoost神经网络的多参数的掌静脉图像质量评价法.根据掌静脉图像质量特点,提出多个参数的评价指标(对比度(contrast)、信息熵(entropy)、清晰度(sharpness)和等效视数(enl)).利用BP网络优良的非线性拟合特点,以多个评价参数为网络输入,分类结果为网络输出,训练10个BP弱分类器;在此基础上利用AdaBoost算法得到最终的强分类器.实验结果显示,对比传统加权融合的评价分类方法,分类的结果准确度较高,系统具有具有良好的应用价值. As a new generation of high-precision biometric recognition technology,palm vein pattern recognition technology is widely used in the field of personal identification.However,its recognition effect is limited by the quality of the image.Low-quality images often result in low recognition accuracy.How to effectively evaluate the image quality and screen out high-quality images becomes an important research issue in palm vein recognition technology.This study aims to solve this problem and proposes a multi-parameter palm vein image quality evaluation method based on BP-AdaBoost neural network.According to the quality characteristics of the palm vein image,the evaluation indexes(contrast,entropy,sharpness and equivalent visual number(enl))of multiple parameters are proposed.Based on the excellent nonlinear fitting characteristics of BP network,multiple evaluation parameters are used as network input,the classification result is network output,and 10 BP weak classifiers are trained.On this basis,the final strong classifier is obtained by AdaBoost algorithm.The experimental results show that compared with the traditional weighted fusion evaluation classification method,the classification results have higher accuracy and the system has good application value.
作者 李苋兰 张顶 黄晞 LI Xian-Lan;ZHANG Ding;HUANG Xi(Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application,College of Photonic and Electronic Engineering,Fujian Normal University,Fuzhou 350007,China)
出处 《计算机系统应用》 2020年第3期20-28,共9页 Computer Systems & Applications
基金 福建省自然科学基金(2019J01271)。
关键词 掌静脉 图像质量评价 多参数 BP神经网络 ADABOOST算法 强分类器 palm vein image quality evaluation multi-parameter BP neural network AdaBoost algorithm strong classifier
  • 相关文献

参考文献6

二级参考文献72

  • 1王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 2殷德奎,俞卞章,佟明安.红外热图像像质评定方法[J].激光与红外,1996,26(2):75-79. 被引量:9
  • 3Hashimoto J. Finger vein authentication technology and its future[C]//2006 Symposium on VLSI Circuits. Kawasaki, 2006 ; 5 - 8.
  • 4Wang J G, Yau W Y, Suwandy A, et al. Person recognition by fusing palm print and palm vein images based on "Laplacian palm" representation[J ]. Pattern Recognition, 2008,41(5) : 1514 - 1527.
  • 5Crisan S, Tamovan I G, Crisan T E. A low cost vein detection system using near infrared radiation [ C]//IEEE Sensors Applications Symposium. San Diego: IEEE, 2007: 51-56.
  • 6Wang L Y, Leedham C G. A thermal hand vein pattern verification system[J].Lecture Notes in Computer Science, 2005,3687 : 58 - 65.
  • 7Dai Y G, Huang B N, Li W X, et al. A method for capturing the finger-vein image using nonuniform intensity infrared light [ C]//1st International Congress on Image and Signal Processing. Tianjin: Tianjin University of Technology, 2008:501 - 505.
  • 8Zhao H, Li Q, Feng H J, et al. Experimental research on distribution of LEDs light intensity [C]//6th International Symposium on Test and Measurement. Beijing: Chinese Society for Modem Technical Equipment (CSMTE), 2005: 910-913.
  • 9Cross J M, Smith C L. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification [C]// IEEE 29th International Carnahan Conference on Security Technology. Sanderstead, IEEE, 1995:20- 35.
  • 10Barmi M, Bartolini F, De Rosa A, et al. Capacity of full frame DCT image watermarks[ J ]. IEEE Transactions on Image Processing, 2000,9 (8) : 1450 - 1455.

共引文献38

同被引文献69

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部