摘要
针对地磁背景下磁偶极子目标跟踪过程中存在的地磁干扰与模型非线性的问题,该文提出一种基于差量磁异常的蒙特卡洛卡尔曼滤波(MCKF)跟踪方法。新的跟踪方法以传感器阵列测量磁场的差量作为观测信号,并利用蒙特卡洛卡尔曼滤波算法解决模型的非线性问题,实现磁偶极子目标的实时跟踪。通过仿真跟踪实验,结果表明该文算法较传统的扩展或无迹卡尔曼滤波算法在稳定跟踪过程中对目标特征参数的估计更精确;通过地磁背景跟踪实验,结果验证了该文算法较传统算法在低信噪比下的性能优势。
In order to solve the problem of geomagnetic interference and model nonlinearity in the tracking process of magnetic dipole under geomagnetic background, Monte Carlo Kalman Filter(MCKF) tracking method based on differential magnetic anomaly is proposed in this paper. The new tracking method takes the difference of magnetic field measured by sensor array as the observation signal, and uses Monte Carlo Kalman Filtering(MCKF) algorithm to solve the nonlinear problem of the model to realize the real-time tracking of magnetic dipole targets. The simulation results show that the proposed method is more accurate than the traditional Extended Kalman Filter(EKF) or Untracked Kalman Filter(UKF) in the stable tracking process.The results of real geomagnetic background tracking experiments show that the proposed algorithm has better tracking performance under low SNR.
作者
陈路昭
冯永强
郭瑞杰
朱万华
方广有
CHEN Luzhao;FENG Yongqiang;GUO Ruijie;ZHU Wanhua;FANG Guangyou(Key Laboratory of Electromagnetic Radiation and Sensing Technology,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;Beijing Automation Control Equipment Institute,Beijing 100074,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2020年第3期573-581,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金青年基金(41704177)
国家重点研发计划“深地资源勘查开采”重点专项(2018YFC0603201)~~
关键词
磁偶极子
蒙特卡洛卡尔曼滤波
传感器阵列
地磁背景
Magnetic dipole
Monte Carlo Kalman Filter(MCKF)
Sensor array
Geomagnetic background