期刊文献+

室内穿墙场景下的无源人体目标检测算法 被引量:8

Indoor Through-the-wall Passive Human Target Detection Algorithm
下载PDF
导出
摘要 穿墙场景下,由于墙体造成信号严重衰减,接收信号中目标反射信号的能量大幅下降,接收信号淹没在收发机直射信号和室内家具反射信号中,难以检测墙后目标。针对上述问题,该文提出一种新颖的基于多维信号特征融合的穿墙多人体目标检测算法(TWMD)。先对接收到的信道状态信息(CSI)进行预处理以消除相位误差和幅值噪声,再利用CSI的时序相关性和子载波相关性从相关系数矩阵中提取多维信号特征,最后使用BP神经网络完成特征与检测结果之间的映射。实验结果表明,该算法在玻璃墙、砖墙和混凝土墙环境的识别精度分别在0.98,0.90, 0.85以上。根据所统计的4000个各类样本的检测结果,与现有基于单一信号特征的检测算法相比,该文算法在对不同数量运动目标的检测上,获得了平均0.45的精度提升。 In through-the-wall scene, due to the serious attenuation of signal caused by wall, the energy of target reflection signal in the received signal decreases significantly and the received signal is submerged in the direct signal of the transceiver and the reflection signal of indoor furniture, making the target behind wall is hard to be detected. In view of the above problems, a novel Through-the-Wall Multiple human targets Detection(TWMD) algorithm based on multidimensional signal features fusion is proposed. Firstly, the received Channel State Information(CSI) is preprocessed to eliminate the phase error and amplitude noise, and the multidimensional signal features are fully extracted from the correlation coefficient matrix by using time correlation and subcarrier correlation of CSI. Finally, the mapping between features and detection results is established by BP neural network. The experimental results show that the recognition accuracy of this algorithm in the environment with glass wall, brick wall and concrete wall is above 0.98, 0.90, 0.85,respectively. According to the detection results of 4000 samples, compared with the existing detection algorithms based on single signal feature, the proposed algorithm achieves an average accuracy improvement of0.45 in the detection of different number of moving targets.
作者 杨小龙 吴世明 周牧 谢良波 王嘉诚 YANG Xiaolong;WU Shiming;ZHOU Mu;XIE Liangbo;WANG Jiacheng(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第3期603-612,共10页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61771083,61704015) 长江学者和创新团队发展计划基金(IRT1299) 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0635) 重庆市教委科学技术研究项目(KJQN201800625)~~
关键词 无源人体目标检测 WIFI 信道状态信息 多维信号特征 Passive human target detection WiFi Channel State Information(CSI) Multidimensional signal
  • 相关文献

参考文献1

二级参考文献31

共引文献5

同被引文献103

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部