期刊文献+

基于CSA-IP&O的局部遮阴下光伏最大功率点追踪 被引量:22

Photovoltaic maximum power point tracking under partial shading based on CSA-IP&O
下载PDF
导出
摘要 局部阴影遮挡(Partial Shading Condition,PSC)使得最大功率点追踪(Maximum Power Point Tracking,MPPT)的追踪速度和精度难以得到保证。对布谷鸟搜索算法(Cuckoo Search Algorithm,CSA)和自适应变步长的改进扰动观察法(Improved Perturbation and Observation,IP&O)进行了研究并应用到光伏的MPPT控制中。利用CSA出色的全局搜索能力快速收敛到全局最大功率点(Maximum Power Point,MPP)附近,然后利用IP&O出色的局部搜索能力快速、准确地收敛到MPP。最后设置了几种光照情况进行仿真,并用扰动观察法和粒子群(Particle Swarm Optimization,PSO)方法进行对比。通过仿真验证了所提出的方法具有更快的追踪速度和更高的精确度。 Partial shading condition makes the tracking speed and accuracy of maximum power point tracking difficult to guarantee.The Cuckoo Search Algorithm(CSA)and the Improved Perturbation and Observation(IP&O)method of adaptive variable step are studied and applied to the MPPT control of the PV system.The excellent global search capability of the CSA is used to converge near the global Maximum Power Point(MPP)quickly,then the excellent local search capability of adaptive variable step Perturbation and Observation(P&O)is used to converge to the MPP quickly and accurately.Finally,several lighting conditions are set up for simulation and P&O and Particle Swarm Optimization(PSO)algorithms are compared.Simulation results indicate that the proposed method has faster tracking speed and higher accuracy.
作者 赵帅旗 肖辉 刘忠兵 朱梓嘉 ZHAO Shuaiqi;XIAO Hui;LIU Zhongbing;ZHU Zijia(College of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China;College of Civil Engineering,Hunan University,Changsha 410082,China)
出处 《电力系统保护与控制》 EI CSCD 北大核心 2020年第5期26-32,共7页 Power System Protection and Control
基金 国家自然科学基金项目资助(51708194,51507014) 湖南省教育厅科学研究重点项目资助(18A120)~~
关键词 局部阴影遮挡 布谷鸟搜索算法 最大功率点追踪 粒子群算法 扰动观察法 partial shading condition cuckoo search algorithm maximum power point tracking particle swarm optimization perturbation and observation
  • 相关文献

参考文献9

二级参考文献149

  • 1杨永恒,周克亮.光伏电池建模及MPPT控制策略[J].电工技术学报,2011,26(S1):229-234. 被引量:145
  • 2李乔,吴捷.自抗扰控制及其在DC-DC变换器中的应用[J].电工技术学报,2005,20(1):83-88. 被引量:27
  • 3崔岩,蔡炳煌,李大勇,胡宏勋,董静微.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539. 被引量:177
  • 4赵争鸣,陈剑,孙晓瑛.太阳能光伏发电最大功率点跟踪技术[M].北京:电子工业出版社,2012.
  • 5Yang X, Deb S. Cuckoo search via Ltvy flights[C]. World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE Publications, 2009: 210-214.
  • 6Civicioglu E Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms[J]. Artificial Intelligence Review, 2011, 39(4): 315-346.
  • 7Yang X S, Deb S. Engineering optimization by cuckoo search[J]. Int J of Mathematical Modelling and Numerical Optimization, 2010, 1(4): 330-343.
  • 8Gandomi A, Yang X, Alavi A. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems[J]. Engineering with Computers, 2013, 29(29): 17-35.
  • 9Valian E, Mohanna S, Tavakoli S. Improved cuckoo search algorithm for feed forward neural network training[J]. Int J of Artificial Intelligence & Applications, 2011, 2(3): 36- 43.
  • 10Marichelvam M K. An improved hybrid cuckoo search(IHCS) metaheuristics algorithm for permutation flow shop scheduling problems[J]. Int J of Bio-Inspired Computation, 2012, 4(4): 200-205.

共引文献231

同被引文献218

引证文献22

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部