摘要
计算社会科学是由技术驱动的社会研究新路径,侧重于用计算方法探究社会关系和社会互动中的模式。与传统社会科学相比,认知上,这一新路径依仗基于自主体模型的生成解释能够帮助人们更好地理解社会的复杂现象,而利用大数据和机器学习等技术,重复预言的可靠性也得以提高;实践上,它可以克服以往社会治理策略的一些缺陷,也有助于设计更美好的未来。不过,在作出新颖预言方面,计算社会科学亦有自身的局限。
Computational social science is a technology-driven approach to social studies, which focuses on the exploration of patterns in social relations and social interactions by using the computational method. Contrary to traditional social sciences, in cognition, this new approach can help better understand the complex phenomena of society by the generative explanation based on the agent-based modeling while the reliability of repetitive prediction can be improved by means of big data and machine learning. In practice, this approach can overcome some defects in previous strategies of social governance and help design a better human future. However, computational social science also has its limitations in novel prediction.
作者
郦全民
LI Quanmin(Center for Knowledge and Action Studies,Department of Philosophy,East China Normal University,200241 Shanghai,China)
出处
《上海交通大学学报(哲学社会科学版)》
CSSCI
北大核心
2019年第5期6-13,共8页
Journal of Shanghai Jiao tong University(Philosophy and Social Sciences)
基金
国家哲学社会科学基金重点项目“当代科学认知的特征和结构研究”(14AZX005)
关键词
计算社会科学
生成解释
计算预言
社会治理
computational social science
generative explanation
computational prediction
social governance