期刊文献+

RSSI改进算法下多目标文本数据关联特征定位研究

Research on the Multi-objective Text Data Association Feature Location Based on the RSSI Improvement Algorithm
下载PDF
导出
摘要 为了提高文本数据的准确挖掘能力,提出基于RSSI改进算法下的多目标文本数据关联特征定位方法.构建多目标文本数据的关联结构分布模型,采用模糊关联规则匹配方法进行多目标文本数据的特征匹配和语义相关性检测,提取多目标文本数据的语义模糊性定位信息,采用RSSI改进算法进行多目标文本数据关联特征寻优,采用相关性检测技术进行多目标文本数据的集成滤波,结合模糊聚类方法进行多目标文本数据特征分类处理,根据分类结果实现RSSI改进算法下多目标文本数据关联特征定位和挖掘.仿真结果表明,采用该方法进行多目标文本数据关联特征定位的准确性较高,特征匹配能力较强,提高了文本数据挖掘的准确率. A multi-target text data association feature location method based on improved RSSI algorithm is proposed in order to improve the accurate mining ability of text data.The association structure distribution model of multi-target text data was constructed.The fuzzy association rule matching method was used to detect the feature matching and semantic correlation of multi-target text data,and the semantic fuzziness location information of multi-target text data was extracted.RSSI improved algorithm was used to optimize multi-target text data association features,correlation detection technology was used to integrate filtering multi-target text data,and fuzzy clustering method was used to classify multi-target text data features.According to the classification results,multi-object text data association feature location and mining based on RSSI improved algorithm was realized.The simulation results show that this method has high accuracy and ability of feature matching for multi-target text data association,and improves the accuracy of text data mining.
作者 任华新 REN Hua-xin(Liaoning University of International Business and Economics,Dalian 116052,China)
出处 《内蒙古民族大学学报(自然科学版)》 2020年第1期36-41,共6页 Journal of Inner Mongolia Minzu University:Natural Sciences
基金 2018年度辽宁省普通高等学校本科教学改革研究项目(10841625)
关键词 RSSI改进算法 多目标文本数据 关联特征 定位 挖掘 Improved RSSI algorithm Multi-objective text data Association features Location Mining
  • 相关文献

参考文献9

二级参考文献81

  • 1靳小波.文本分类综述[J].自动化博览,2006,23(z1):24-29. 被引量:16
  • 2郑双怡.文本挖掘及其在知识管理中的应用[J].中南民族大学学报(人文社会科学版),2005,25(4):127-130. 被引量:24
  • 3贾澎涛,何华灿,刘丽,孙涛.时间序列数据挖掘综述[J].计算机应用研究,2007,24(11):15-18. 被引量:77
  • 4Xue Gui-Rong, Xing Di-Kan, Yang Qiang, et al. Deep classification in large- scale text hierarchies/ /Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore, 2008: 619-626.
  • 5Dh H, Choi y, Myaeng S. Combining global and local information for enhanced deep classification/ /Proceedings of the 25th ACM SIGAPP Symposium on Applied Computing. Sierre , Switzerland, 2010: 1760-1767.
  • 6Malik H. Improving hierarchical SVMs by hierarchy flattening and lazy classification/ /Proceedings of the Large-Scale Hierarchical Classification Workshop in 32nd European Conference on Information Retrial. Milton Keynes, UK, 2010: 1-12.
  • 7Han Xiaogang , Liu Iunfa , Shen Zhiqi , et al. An optimized K -nearest neighbor algorithm for large scale hierarchical text classification/ /Proceedings of the 2011 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Athens, Greece, 2011: 2-12.
  • 8Xing Di-Kan , Xue Gui-Rong, Yang Qiang , et al. Deep classifier: Automatically categorizing search results into largescale hierarchies/ /Proceedings of the 1 st ACM International Conference On Web Search and Data Mining. New York, USA, 2008: 139-148.
  • 9Malik H, Fradkin D, Moerchen F. Single pass text classification by direct feature weighting. Knowledge and Information Systems, 2011, 28(1): 79-98.
  • 10Guan Hu , Zhou Iingyu , Guo Minyi. A class-feature-centroid classifier for text categorization/ /Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009: 201-210.

共引文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部