摘要
针对含有动态背景的运动目标检测问题,本文提出了一种低秩–稀疏与全变分表示的运动目标检测方法.提出方法以鲁棒主成分分析(RPCA)为基础,利用三维全变分对运动目标约束,去除动态背景的干扰;同时利用低秩矩阵在正交子空间下系数的群稀疏性来加速低秩矩阵的秩最小化,弥补全变分计算量大的问题,平衡整体运行速度.实验结果表明,该方法不仅能准确检测复杂背景下的运动目标,而且还保持了较快的运行速度.
Moving object detection with dynamic background is addressed in this paper.New method of moving object detection with low rank-sparse and total variation representation is proposed.The proposed method is based on robust principal component analysis(RPCA),and the three-dimensional total variation is constrained to the moving object.Then the interference of the dynamic background is removed.At the same time,the group sparsity of the coefficients of the low rank matrix in the orthogonal subspace is used to accelerate the computation of rank minimization of the low rank matrix,which compensate for the large amount of total variational computation and balance the overall running speed.Experimental results show that the method can not only detect the moving objects in complex background,but also maintain fast running speed.
作者
杨磊
庞芳
胡豁生
YANG Lei;PANG Fang;HU Huo-sheng(School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China;School of Computer Science and Electrical Engineering,University of Essex,Colchester,Essex CO43SQ,United Kingdom)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2020年第1期81-88,共8页
Control Theory & Applications
基金
国家科技部重点研发计划项目(2018YFC1312903)资助~~
关键词
鲁棒主成分分析
低秩–稀疏
全变分
目标检测
robust principal component analysis(RPCA)
low rank-sparse
total variation
object detection