期刊文献+

基于人工神经网络的HEMT器件参数提取方法研究 被引量:2

Research on HEMT device parameter extraction method based on artificial neural network
下载PDF
导出
摘要 研究了利用人工神经网络对不同频带、栅宽的砷化镓高电子迁移率晶体管进行散射参数和噪声参数提取,基于两个神经网络分别对两组散射参数和噪声参数进行训练学习,比较不同隐含层和神经元数目得出平均相对误差和均方误差,找到对应散射参数和噪声参数神经网络的最佳的隐含层数和神经元数目是8-8-6和6-4。测试结果表明,散射参数平均相对误差的平均值为2.79%,噪声参数平均相对误差的平均值为2.05%,与常规单个神经网络结构相比,在平均相对误差方面提高了31.3%,表明该模型具备更好的精度和可靠性,十分适用于宽禁带、强非线性特征的射频晶体管参数提取。 Artificial neural network(ANN) is used to extract scattering parameters and noise parameters of GaAs high electron mobil-ity transistors with different frequency bands and gate widths.Based on the two neural networks, the two groups of scattering pa-rameters and noise parameters are trained and studied respectively.The average relative error and mean square error are obtained by comparing different hidden layers and the number of neurons.It is found that 8-8-6 and 6-4 correspond to the optimal hid-den layers and number of neurons of the neural networks with scattering parameters and noise parameters.The test results show that the average relative error of scattering parameters is 2.79 %.Compared with the conventional single neural network structure,the average relative error is increased by 31.3 %.This shows that the model in this paper has better accuracy and reliability,which shows that this model has higher accuracy and is very suitable for parameter extraction of RF transistors with wide band gap and strong nonlinearity.
作者 黄兴原 秦剑 Huang Xingyuan;Qin Jian(Department of Electronics and Communication Engineering,Guangzhou University,Guangzhou 510006,China)
出处 《电子技术应用》 2020年第3期47-50,57,共5页 Application of Electronic Technique
基金 2020年广州市科技计划基础与应用基础研究项目(202030190007)
关键词 人工神经网络 砷化镓 高电子迁移率晶体管 散射参数 噪声参数 ANN GaAs HEMT scattering parameter noise parameter
  • 相关文献

参考文献3

二级参考文献20

  • 1卢磊,周锋,唐长文,闵昊,王俊宇.中心抽头差分电感的等效模型和参数提取[J].Journal of Semiconductors,2006,27(12):2150-2154. 被引量:6
  • 2Danesh M, Long J R. Differentially driven symmetric microstrip induetors [J]. IEEE Trans Microwave Theory Tech, 2002, 50: 332-341.
  • 3Watson A, Mayevskiy Y, Francis P, et al. Compact modeling of differential spiral inductors in Si-based RFICs[C]// IEEE MTT-S Int Microwave Symp Digest. 2004, 2:1053- 1056.
  • 4Teo T H, Choi Y B, Liao H, et al. Characterization of symmetrical spiral inductor in 0.35 μm CMOS technology for RF application[J]. Solid-State Electronics, 2004, 48: 1643- 1650.
  • 5Huang F Y, Jiang N, Bian E L. Modeling of single-π equivalent circuit for on-chip spiral inductors [J]. Solid-State Electronics, 2005, 49:473 - 478.
  • 6Arcioni P, Castello R, De Astis G, et al. Measurement and modeling of Si integrated inductors[J]. IEEE Trans Instrum Measur, 1998, 47: 1372-1378.
  • 7Chen Z, Guo L H. Application of the genetic algorithm in modeling RF on-chip inductors [J]. IEEE Trans Microwave Theory Tech, 2003, 51 : 342 - 346.
  • 8Zhao J S, Frye R C, Dai W W-M, et al. S parameter-based experimental modeling of high Q MCM inductor with exponential gradient learning algorithm[C]// IEEE Trans Components Packaging Manufact Technol, Part B: Adv Packaging, 1997, 20: 202-210.
  • 9Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces[J]. J Global Optim, 1997, 11:341 -359.
  • 10Mandal S K, De A, Patra A, et al. A wide-band lumped element compact CAD model of Si-based planar spiral inductor for RFIC design[C]// Proc 19th Int Conf VLSI Design. 2006:27 - 33.

共引文献14

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部