摘要
为改善智能车驱动电机调速与舵机转向的协调性,简化调参适配步骤,提出了基于MK60FN1(MK60)芯片的驱动与转向协同控制的模糊自适应控制方案。MK60计算出摄像头拍摄图像中车体与车道中线的位置偏差和角度偏差,根据位置偏差与舵机角度、角度偏差与测量到的车速,采用局部参数优化理论设计模糊自适应控制算法实时调整驱动电机和舵机的可调增益实现协同控制。与驱动、转向分开独立控制的策略相比较,本方案减小了稳态误差,智能车能够更快完成自主循迹,稳定性更好。
A fuzzy adaptive control scheme is proposed for the coordinated control of driving and steering based on MK60 FN1(MK60) chip is proposed in order to improve the coordination and simplify the adjustment and adaptation steps of the servo steering and motor speed regulation. The position deviation and the angle deviation between the car body and the lane center line of the current image collected from the camera are calculated by MK60. Using fuzzy adaptive control algorithm based on the theory of local parameter optimization, the motor is controlled by the position deviation and measured steering angle, while the servo is controlled by the angle deviation and measured motor speed to control servo and motor system unitedly. The scheme of the servo and driving motor system controlled unitedly reduce the steady-state error compared with the strategy of separate independent control. The intelligent vehicle can complete autonomous tracking faster and has a better stability.
作者
叶佩芸
简磊
王皓民
高登
Ye Peiyun;Jian Lei;Wang Haomin;Gao Deng(School of Electrical and Electronic Information Engineering,Sichuan University Jinjiang College,Meishan Sichuan,620860)
出处
《电子测试》
2020年第5期40-44,21,共6页
Electronic Test
基金
四川省教育厅科研项目(17ZB0259)
关键词
智能车
模糊自适应控制
协同控制
独立控制
局部参数优化
Intelligent vehicle
Fuzzy adaptive control
Cooperative control
Independent control
Local parameter optimization