期刊文献+

COMPUTATIONAL MULTISCALE METHODS FOR LINEAR HETEROGENEOUS POROELASTICITY

原文传递
导出
摘要 We consider a strongly heterogeneous medium saturated by an incompressible viscous fluid as it appears in geomechanical modeling.This poroelasticity problem suffers from rapidly oscillating material parameters,which calls for a thorough numerical treatment.In this paper,we propose a method based on the local orthogonal decomposition technique and motivated by a similar approach used for linear thermoelasticity.Therein,local corrector problems are constructed in line with the static equations,whereas we propose to consider the full system.This allows to benefit from the given saddle point structure and results in two decoupled corrector problems for the displacement and the pressure.We prove the optimal first-order convergence of this method and verify the result by numerical experiments.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2020年第1期41-57,共17页 计算数学(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部