摘要
针对永磁同步电机参数辨识困难、电磁转矩难以通过数学模型来精确估算从而导致电机控制精度以及驱动系统的整体性能下降的问题,设计了一种基于反向传播(BP)神经网络的电机电磁转矩网络拓扑。通过MATLAB/Simulink将该神经网络封装成转矩观测器,用于精确地计算电机转矩。最后通过试验平台进行试验验证,并与传统转矩的计算方式进行对比分析。结果表明:所设计的转矩观测器具有高精度的转矩输出性能,与传统转矩估算数学模型相比,具有更高的控制精度和准确性。
It is difficult to identify the motor parameters of permanent magnet synchronous motor, and the electromagnetic torque is also difficult to accurately estimate by mathematical model, which leads to the decrease of the motor control precision and the overall performance of the drive system. A motor electromagnetic torque network topology based on back-propagation(BP) neural network is designed. The network is packaged into a torque observer by MATLAB/Simulink for accurate calculation of motor torque. Experimental verification and comparison with the traditional calculation method are carried out by the experimental platform. Experimental results show that the torque observer has high-precision torque output performance and the control precision is higher than that of the traditional torque estimation mathematical model.
作者
耿建平
闫俞佰
熊光阳
张奎庆
潘家栋
GENG Jianping;YAN Yubai;XIONG Guangyang;ZHANG Kuiqing;PAN Jiadong(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China;Shenzhen Institute of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,China)
出处
《电机与控制应用》
2020年第1期78-83,共6页
Electric machines & control application
关键词
永磁同步电机
转矩观测器
参数辨识
控制精度
系统性能
反向传播神经网络
permanent magnet synchronous motor
torque observer
parameter identification
control precision
system performance
back-propagation(BP)neural network