期刊文献+

基于多微云协作的计算任务卸载 被引量:1

Computing task offloading based on multi-cloudlet collaboration
下载PDF
导出
摘要 针对多微云计算模式下计算任务卸载过程复杂、任务响应时间长的问题,构建面向多微云协作的计算任务卸载模型,并提出加权自适应惯性权重的粒子群优化(WAIW-PSO)算法,快速求解最优卸载策略。首先,对移动终端-微云-远程云的任务执行过程进行建模;其次,考虑多用户对计算资源的竞争,构建基于多微云协作的任务卸载模型;最后,针对求解最佳任务卸载策略复杂度过高的情况,提出WAIW-PSO算法求解卸载问题。仿真实验结果表明,与标准粒子群优化(PSO)算法以及基于高斯函数递减惯性权重的粒子群优化(GDIWPSO)算法相比,WAIW-PSO算法可以根据进化代数和个体适应度综合调整惯性权重,寻优能力较强,求解最优卸载策略的时间最短;在不同设备数、任务数等情况下选择不同任务卸载策略进行对比实验的结果表明,基于WAIW-PSO算法的卸载策略可以明显缩短任务总完成时间。 Focusing on the problems of complex process and long response time of task offloading in multi-cloudlet mode,a computing task offloading model based on multi-cloudlet collaboration was constructed,and a Weighted selfAdaptive Inertia Weight Particle Swarm Optimization(WAIW-PSO)algorithm was proposed to solve the optimal offloading scheme quickly.Firstly,the task execution process of mobile terminal-cloudlet-remote cloud was modeled.Secondly,considering the competition of computing resources by multiple users,the task offloading model based on multi-cloudlet collaboration was constructed.Finally,since the complexity of solving the optimal offloading scheme was excessively high,the WAIW-PSO was proposed to solve the offloading problem.Simulation results show that compared with the standard Particle Swarm Optimization(PSO)algorithm and the PSO algorithm with Decreasing Inertia Weight based on Gaussian function(GDIWPSO),WAIW-PSO algorithm can adjust the inertia weight according to evolutionary generation and individual fitness,and it has the better optimization ability and the shortest time for finding the optimal offloading scheme.Experimental results on different task unloading schemes with different numbers of equipments and tasks show that the WAIW-PSO algorithm based offloading schemes can significantly shorten the total task completion time.
作者 王庆永 毛莺池 王绎超 王龙宝 WANG Qingyong;MAO Yingchi;WANG Yichao;WANG Longbao(College of Computer and Information,Hohai University,Nanjing Jiangsu 211100,China)
出处 《计算机应用》 CSCD 北大核心 2020年第2期328-334,共7页 journal of Computer Applications
基金 国家重点研发计划项目(2018YFC0407905) 华能集团重点研发课题资助项目(HNKJ17-21)~~
关键词 移动云计算 微云 任务卸载 多微云协作 粒子群优化 mobile cloud computing cloudlet task offloading multi-cloudlet collaboration Particle Swarm Optimization(PSO)
  • 相关文献

参考文献3

二级参考文献20

  • 1赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization [ C ]// Proc of IEEE International Conference on Neural Networks. New York : IEEE Press, 1995 : 1942-1948.
  • 5POLI R. Analysis of the publications on the application of particle swarm optimization [J]. Journal of Artificial Evolution and Appli- cations ,2008,8(2) :4.
  • 6SHI Yu-hui, EBERHART R C. A modified particle swarm optimizer [ C ]//Proc of IEEE Congress on Evolutionary Computation. New York: IEEE Press,1998 : 69-73.
  • 7SHI Yu-hui, EBERHART R C. Empirical study of particle swarm op- timization [ C ]//Proc of Congress on Evolutionary Computation. Washington DC : IEEE Press, 1999 : 1945-1950.
  • 8YADMELLAT P, SALEHIZADEH S M A, MENHAJ M B. A new fuzzy inertia weight particle swarm optimization[ C ]//Proc of Interna- tional Conference on Computational Intelligent and Natural Compu- ting. 2009:507-510.
  • 9YANG Cheng-hong, CHENG Y H, CHUANG L Y. A novel chaotic inertia weight particle swarm optimization for PCR primer design [ C ]//Proc of Intemational Conference on Technologies and Applica- tions of Artificial Intelligence. 2010:373-378.
  • 10任子晖,王坚.一种动态改变惯性权重的自适应粒子群算法[J].计算机科学,2009,36(2):227-229. 被引量:50

共引文献470

同被引文献11

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部