期刊文献+

使用深度对抗子空间聚类实现高光谱波段选择 被引量:3

Hyperspectral band selection based on deep adversarial subspace clustering
下载PDF
导出
摘要 高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提下降低分类的复杂度。该网络通过在编码器和解码器中引入自表达层来模仿传统子空间聚类的"自表达"属性,充分运用光谱信息和非线性特征转换得到波段之间的相互关系,解决传统波段选择方法无法同时考虑光谱和空间信息的问题。同时,引入对抗学习来监督自编码器的样本表示和子空间聚类,使得子空间聚类具有更好的自表达性能。为了使网络性能更优,加入拉普拉斯正则化来考虑反映图像几何信息的局部流形结构。实验在两个公开的高光谱数据集上进行,所提出的方法和几种主流的波段选择方法进行对比的结果表明,DASC方法在分类精度上优于对比方法,其选出的波段子集可以满足应用需求。 HyperSpectral Image(HSI)consists of hundreds of bands with strong intra-band correlations between bands and high redundancy,resulting in dimensional disaster and increased classification complexity.Therefore,a Deep Adversarial Subspace Clustering(DASC)method was used for hyperspectral band selection,and Laplacian regularization was introduced to make the network performance more robust,which reduces the classification complexity under the premise of ensuring classification accuracy.A self-expressive layer was introduced between the encoder and the decoder to imitate the"self-expression"attribute of traditional subspace clustering,making full use of the spectral information and nonlinear feature transformation to obtain the relationships between the bands,and solving the problem that traditional band selection methods cannot consider spectral-spatial information simultaneously.At the same time,adversarial learning was introduced to supervise the sample representation of the auto-encoder and subspace clustering,so that the subspace clustering has better self-expression performance.In order to make the network performance more robust,Laplacian regularization was added to consider the manifold structure reflecting geometric information.Experimental results on two public hyperspectral datasets show that compared with several mainstream band selection methods,DASC method has higher accuracy,and the selected band subset of the method can satisfy application requirements.
作者 曾梦 宁彬 蔡之华 谷琼 ZENG Meng;NING Bin;CAI Zhihua;GU Qiong(Computer School,Hubei University of Arts and Science,Xiangyang Hubei 441053,China;School of Computer Science,China University of Geosciences(Wuhan),Wuhan Hubei 430074,China)
出处 《计算机应用》 CSCD 北大核心 2020年第2期381-385,共5页 journal of Computer Applications
基金 教育部科技发展中心高校产学研创新基金——新一代信息技术创新项目(2018A02028) 国家自然科学基金资助项目(61773355,61603355) 中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(G1323541717) 湖北省自然科学基金资助项目(2018CFB528) 智能地学信息处理湖北省重点实验室开放研究项目(KLIGIP-2017B01)~~
关键词 高光谱图像 波段选择 深度对抗子空间聚类 拉普拉斯正则化 深度学习 HyperSpectral Image(HSI) band selection Deep Adversarial Subspace Clustering(DASC) Laplacian regularization deep learning
  • 相关文献

参考文献3

二级参考文献119

  • 1Archibald, R., Fann, G., 2007. Feature selection and clas sification of hyperspectral images, with support vector machines. IEEE Geosci. Remote Sens. Lett., 4(4):674-677. [dol: 10.1109/LGRS.2007.905116].
  • 2Bazi, Y., Melgani, F., 2006. Toward an optimal SVM classifi cation system for hyperspectral remote sensing images. IEEE Trans. Geosei. Remote Sens., 44(11):3374-3385. [doi: 10.1109/TGRS.2006.880628].
  • 3Chang, C.C., Lin, C.J., 2001. LIBSVM: a Library for Support Vector Machines. Available from http://www. csie.ntu.edu.tw/-ejlin/libsvm/ Chang, C.I., Du, Q., Sun, T.L., Althouse, M.L.G., 1999.
  • 4A joint band prioritization and band-decorrelation ap proach to band selection for hyperspectral image clas sification. IEEE Trans. Geosei. Remote Sens., 37(6):2631-2641. [doi: 10.1109/36.803411].
  • 5Cheng, Q., Varshney, P.K., Arora, M.K., 2006. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geosci. Remote Sens. Lett., 3(4):491-494. [doi:10.1109/LGRS.2006.877949].
  • 6Ding, C., He, X., Simon, H.D., 2005. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clus tering. Proc. SIAM Data Mining Conf., p.606-610.
  • 7Fisher, R.A., 1936. The use of multiple measurements in taxonomic problems. Ann. Hum. Genet., 7(2):179-188. [doi:10.1111/j.1469-1809.1936.tb02137.x].
  • 8Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. Mach. Learn. Res., 3(7-8):1157-1182. [doi: 10.1162/153244303322753616].
  • 9Hoyer, P.O., 2004. Non-negative matrix factorization with sparseness constraints. J. Maeh. Learn. Res., 5:1457-1469.
  • 10Hyvgrinen, A., Oja, E., 2000. Independent component anal ysis: algorithms and applications. Neur. Networks, 13(4-5):411-430. [doi:10.1016/S0893-6080(00)00026-5].

共引文献56

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部