期刊文献+

基于BTM的物联网服务发现方法 被引量:2

Service discovery method for Internet of Things based on Biterm topic model
下载PDF
导出
摘要 针对物联网(IoT)服务描述文本篇幅较短、特征稀疏,直接采用传统的主题模型对IoT服务建模得到的聚类效果不佳,从而导致无法发现最佳服务的问题,提出了一种基于BTM的IoT服务发现方法。该方法首先利用BTM挖掘现有IoT服务的隐含主题,并通过全局主题分布和主题-词分布计算推理得到服务文档-主题概率分布;其次利用K-means算法对服务进行聚类,并返回服务请求的最佳匹配结果。实验结果分析表明,该方法能够有效提高IoT服务的聚类效果,从而得到匹配的最佳服务。与现有的HDP(Hierarchical Dirichlet Process)、基于K-means的隐狄利克雷分配(LDA-K)等方法相比,该方法进行最佳服务发现的准确度(Precision)和归一化折损累积增益(NDCG)均有一定幅度的提高。 Service description texts for Internet of Things(IoT)are short in length and sparse in text features,and direct modeling the IoT service by using traditional topic model has poor clustering effect,so that the best service cannot be discovered.To solve this problem,an IoT service discovery method based on Biterm Topic Model(BTM)was proposed.Firstly,BTM was employed to mine the latent topic of the existing IoT services,and the service document-topic probability distribution was calculated and deduced through global topic distribution and theme-word distribution.Then,K-means algorithm was used to cluster the services and return the best matching results of service requests.Experimental results show that the proposed method can improve the clustering effect of services for IoT and thus obtain the matched best service.Compared with the methods of HDP(Hierarchical Dirichlet Process)and LDA-K(Latent Dirichlet Allocation based on Kmeans),the proposed method achieves better performance in terms of Precision and Normalized Discounted Cumulative Gain(NDCG)for best service discovery.
作者 王舒漫 李爱萍 段利国 付佳 陈永乐 WANG Shuman;LI Aiping;DUAN Liguo;FU Jia;CHEN Yongle(College of Information and Computer,Taiyuan University of Technology,Taiyuan Shanxi 030024,China)
出处 《计算机应用》 CSCD 北大核心 2020年第2期459-464,共6页 journal of Computer Applications
基金 国家重点研发计划“网络空间安全”专项子课题资助项目(2018YFB0803402)~~
关键词 物联网服务 BTM 短文本 主题建模 服务发现 service for Internet of Things(IoT) Biterm Topic Model(BTM) short text topic modeling service discovery
  • 相关文献

参考文献3

二级参考文献24

  • 1Teh Y, Jordan M, Beal M, Blei D. Hierarchical Dirichlet process. Journal of the American Statistical Association, 2004,101(476): 1566-1581. [doi: 10.2307/27639773].
  • 2Zhang DQ, Yang LT, Huang HY. Searching in Internet of things: Vision and challenges. In: Proc. of the IEEE 9th Int'l Symp. on Parallel and Distributed Processing with Application (ISPA). 2011.201-206. [doi: 10.1109/ISPA.2011.53].
  • 3Valerie I, Nikolaos G, Sara H, Apostolos Z, Panos V, Marco A, Marco AG, Amira BH. Service-Oriented middleware for the future Internet: State of the art and research directions. Journal of Internet Services and Applications, 2011,2(1):23-45. [doi: 10.1007/ s13174-011-0021-3].
  • 4Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D. Interacting with the SOA-based Internet of things: Discovery, query, selection, and on-demand provisioning of Web services. IEEE Trans. on Services Computing, 2010,3(3):223-235. [doi: 10.1109/ TSC.2010.3].
  • 5Teixeira T, Hachem S, Issarny V, Georgantas N. Service oriented middleware for the Interact of things: A perspective. In: Abramowicz W, ed. Proc. of the 4th European Conf. on ServiceWave. Berlin, Heidelberg: Springer-Verlag, 2011. 220-229. [doi: 10.1007/978i3-642-24755-2_21 ].
  • 6Cassar G, Barnaghi P, Wang W, Moessner K. A hybrid semantic matchmaker for loT services. In: Proe. of the IEEE Int'l Conf. on Green Computing and Communications (GreenCom). Washington: IEEE Computer Society, 2012. 210-216. [doi: 10.1109/Green Com.2012.40].
  • 7Blei DM, NgAY, Jordan MI. Latent dirichlet allocation. Journal of Machine Learning Research, 2003,3:993-1022.
  • 8Cassar G, Barnaghi P, Moessner K. Probabilistic matchmaking methods for automated service discovery. IEEE Trans. on Services Computing, 2013,PP(99): 1-1. [doi: 10.1109/TSC.2013.28].
  • 9Hoffman M, Blei D, Bach F. Online learning for latent Dirichlet allocation. In: Lafferty J, ed. Proc. of the Advances in Neural Information Processing Systems 23 (NIPS). 2010. 856-864.
  • 10Wang C, Paisley J, Blei D. Online variational inference for the hierarchical Dirichlet process. In: Proc. of the 14th Int'l Conf. on Artificial Intelligence and Statistics (AISTATS). 2011. 752-760.

共引文献36

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部