期刊文献+

基于情感分析的用户痛点量化研究

Quantitative Research on Customer Pain Point Based on Sentiment Analysis
下载PDF
导出
摘要 找准用户痛点是企业获得巨大市场回报或高度品牌黏度的有效手段.为协助企业准确把握产品或服务的关键点、完善营销策略,在传统用户痛点理论基础上,提出了保健痛点和激励痛点,并借助情感分析方法,建立了用户痛点量化模型.对京东的三种手机的商品评论进行实证研究,研究表明该模型具有一定的实用性和有效性. Identifying customers pain points is an effective way for the enterprises to gain huge market returs or high brand viscosity.In order to help the enterprises accurately grasp the key points of products or services and improve marketing strategies,based on the traditional customer pain point theory,the hygiene pain point and motivation pain point are proposed,and the quantitative model of customer pain point is established by means of sentiment analysis method.An empirical study on the product evaluation of three kinds of mobile phones in JD shows that the model is practical and effective.
作者 王召义 薛晨杰 刘玉林 WANG Zhaoyi;XUE Chenjie;LIU Yulin(Department of Economy and Trade,,Anhui Business College of Vocational Technology,Wuhu 241002,China)
出处 《宿州学院学报》 2020年第1期80-84,共5页 Journal of Suzhou University
基金 安徽省高校自然科学研究重点项目(KJ2018A0721 KJ2019A1007) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2017110)。
关键词 情感分析 用户痛点 商品评价 Sentiment analysis Customer pain point Product evaluation
  • 相关文献

参考文献5

二级参考文献32

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:58
  • 2http://baike, baidu, corn/view/3061484, htm.
  • 3Greevy E,Alan F S. Classifying racist texts using a support vec- tor rnachine[C]///Proceedings of the 27th Annual International ACM SIGIR Conference. New York, NY, USA, 2004 : 468-469.
  • 4Zhou Y L, Reid E, Qin J. US domestic extremist groups on the Web:link and content analysis[J]. IEEE Intelligent Systems, 2005,20(5) :44-51.
  • 5Tang Xu-ri, Chen Xiao-he, Qu Wei-guanget al. Semi-Supervised WSD in Selectional Preferences with Semantic Redundancy[C]//Coling 2010 : Poster Volume. Beijing, August 2010 : 1238-1246.
  • 6Bermingham A, Smeaton A F. On Using Twitter to Monitor Po- litical Sentiment and Predict Election Results[C]//Proceedings of the Workshop on Sentiment Analysis where AI meets Psy- chology (SAAIP) (IJCNLP 2011). Chiang Mai, Thailand, No- vember 2011 : 2-10.
  • 7Bermingham A,Smeaton A F. Classifying sentiment in microb- logs: is brevity an advantage[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge -Mana- gement(CIKM ' 10). New York, USA, ACM, 2010 : 1833-1836.
  • 8SIFTsystem[EB/OL]. http://www, sift. com/.
  • 9Newsweeder[EB/OL]. http://eiteseer, ist. psu. ed/lang95news weeder, html.
  • 10Dave K, Lawrence S, Pennock D M. Mining the Classification of Product Reviews[C]//Proceedings of the 12th International World Wide Web Conference. Budapest, Hungary 2003.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部