期刊文献+

基于分离字典的图像超分辨率重建 被引量:3

The algorithm of image super-resolution reconstruction via separable dictionaries
原文传递
导出
摘要 传统的基于稀疏表示的图像超分辨率重建算法,需要将图像进行分块并列化为向量,这样就破坏了图像块内邻域像素间的相关性.为了更好地利用图像邻域内的结构信息,本文结合分离字典能从不同方向对图像块进行稀疏表示的特性,提出了基于分离字典的图像超分辨率重建算法.实验结果表明,与传统基于稀疏表示的图像超分辨率重建算法相比,本文算法不仅提高了图像重建的速度,而且在PSNR和SSIM两个衡量指标上都优于传统基于稀疏表示的超分辨率重建算法(PSNR提高约0.2 dB, SSIM提高约0.01). Traditional sparse representation-based super-resolution algorithms need to divide images into patches and then stack them into columns. This operation ignores the intrinsic 2 D structure and spatial correlation inherent in patches. In order to fully exploit 2 D spatial correlation in image patches, we combine the sparse representation ability of the separable dictionary in both the horizontal and vertical directions, and propose an algorithm for image super-resolution based on a separable dictionary. The experimental results show that our proposed algorithm not only improves the efficiency of image super-resolution, but also improves the PSNR and SSIM(i.e., about 0.2-dB PSRN better than traditional methods, and 0.01 SSIM better than existing methods).
作者 张凤珍 岑翼刚 赵瑞珍 王艳红 张琳娜 胡绍海 Fengzhen ZHANG;Yigang CEN;Ruizhen ZHAO;Yanhong WANG;Linna ZHANG;Shaohai HU(Key Laboratory of Solar Activity,National Astronomical Observatory,Chinese Academy of Science,Beijing 100101,China;Institute of Information Science,Beijing Jiaotong University,Beijing 100044,China;Key Laboratory of Advanced Information Science and Network Technology of Beijing,Beijing 100044,China;College of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2020年第2期275-288,共14页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:61872034,61572067,61572063,61572461,11790305) 贵州省自然科学基金(批准号:[2019]1064) 中央高校基本科研业务费(批准号:2017JBZ108)资助项目
关键词 图像超分辨率重建 2D 稀疏编码 黎曼流形 稀疏表示 分离字典 image super-resolution reconstruction 2D sparse coding Riemannian manifold sparse representation separable dictionary
  • 相关文献

参考文献4

二级参考文献43

  • 1Candes E,Romberg J,Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre- quency information. IEEE Trans Inform Theory,2006,52: 489-509.
  • 2Candes E,Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory,2006,52: 5406-5425.
  • 3Donoho D. Compressed sensing. IEEE Trans Inform Theory,2006,52: 1289-1306.
  • 4Candes E,Tao T. Decoding by linear programming. IEEE Trans Inform Theory,2005,51: 4203-4215.
  • 5Tropp J,Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory,2007,53: 4655-4666.
  • 6Pope G. Compressive sensing: a summary of reconstruction algorithms. Master thesis. Zrich: Eidgenssische Technische Hochschule. 2009.
  • 7Rivenson Y,Stern A. Compressed imaging with a separable sensing operator. IEEE Signal Process Lett,2009,16: 449-452.
  • 8Ghaffari A,Babaie-Zadeh M,Jutten C. Sparse decomposition of two dimensional signals. In: IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP,Taipei,2009. 3157-3160.
  • 9Liu Y,Wu M Y,Wu S J. Fast OMP algorithm for 2D angle estimation in MIMO radar. IET Electronics Lett,2010,46: 444-445.
  • 10Smith L N, Elad M. Improve dictionary learning: multiple dictionary updates and coefficient reuse [J]. IEEE Signal Processing Letter, 2013, 20(1) : 79-82.

共引文献26

同被引文献25

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部