期刊文献+

基于气动参数调节的无人机抗扰动控制算法 被引量:3

Anti-disturbance Control Algorithm of UAV Based on Pneumatic Parameter Regulation
下载PDF
导出
摘要 无人机飞行受到气动阻尼扰动,从而导致控制稳定性不好。当前采用翼型截面气动参数调节的方法进行无人机抗扰控制,以扭角以及振动方向等参数为约束指标,参数调节的模糊度较大,对气动姿态参数调节的稳定性不好。文中提出基于气动参数调节的无人机抗扰动控制算法。该算法根据无人机的飞行工况构建各阶模态对应的气弹耦合方程,在速度坐标系、体坐标系、弹道坐标系三维坐标系下构建无人机的飞行动力学和运动学模型;采用卡尔曼滤波方法实现对无人机飞行参数的融合调节和小扰动抑制处理,并采用末端位置参考模型进行无人机飞行轨迹的空间规划设计;在卡尔曼滤波预估模型中实现对动力学模型的线性化处理,采用气弹模态参数识别方法进行无人机的飞行扰动调节;将姿态控制作为内环,获得位置环状态反馈调节参数;以无人机的升力系数和扭力系数作为气动惯性参数进行飞行姿态的稳定性调节,从而实现无人机抗扰动控制律的优化设计。采集飞机的俯仰角、横滚角和航向角作为原始数据在Matlab中进行仿真分析,仿真结果表明,采用所提方法进行无人机抗扰动控制的稳定性较好,对气动参数进行在线估计的准确性较高,航向角误差降低12.4%,抗扰动能力提升8dB,收敛时间比传统方法缩短0.14 s,无人机飞行的抗扰动性和飞行稳定性得到提高。所提方法在无人机飞行控制中具有很好的应用价值。 The control stability of UAV flight caused by aerodynamic damping disturbance is not good.At present,the aerodynamic parameter adjustment method of airfoil section is used to control UAV anti-disturbance,and the parameters such as torsion angle and vibration direction are taken as constraint index.The ambiguity of the parameter adjustment is large,and the stability of the pneumatic attitude parameter adjustment is not good.The anti-disturbance control algorithm of UAV based on aerodynamic parameter adjustment was proposed.According to the flight condition of UAV,the Aeroelastic coupling equations corresponding to each modal were constructed,in the velocity coordinate system and body coordinate system.The flight dynamics and kinematics model of UAV was constructed in the three-dimensional coordinate system of ballistic coordinate system.Kalman filtering method is used to realize the fusion adjustment of flight parameters and small disturbance suppression of UAV.The terminal position re-ference model is used to design the flight trajectory of UAV.The linearization of the dynamic model is realized in the Kalman filter prediction model,and the Aeroelastic modal parameter identification method is adopted.The attitude control is used as the inner loop to obtain the state feedback adjustment parameters of the position loop.The lift coefficient and torque coefficient of the UAV are used as the aerodynamic inertia parameters to adjust the stability of the flight attitude.The optimization design of anti-disturbance control law for UAV is realized.The pitch angle,roll angle and heading angle of the aircraft are collected and analyzed in Matlab as the original data.The simulation results show that the proposed method has a good stability in the anti-disturbance control of UAV.The accuracy of on-line estimation of aerodynamic parameters is high,the heading angle error is reduced by 12.4%,the anti-disturbance ability is improved by 8 dB,the convergence time is shortened by 0.14s,and the flight immunity and flight stability of UAV are improved.It has good application value in UAV flight control.
作者 赵敏 戴凤智 ZHAO Min;DAI Feng-zhi(School of Electronic Information and Automation,Tianjin University of Science&Technology College,Tianjin 300202 China)
出处 《计算机科学》 CSCD 北大核心 2020年第3期237-241,共5页 Computer Science
关键词 动参数调节 无人机 抗扰动控制 动力学模型 Dynamic parameter adjustment UAV Anti-disturbance control Dynamic model
  • 相关文献

参考文献8

二级参考文献58

  • 1刘毅,阳宪惠,熊智华.基于支持向量回归模型的间歇过程优化[J].华东理工大学学报(自然科学版),2006,32(7):880-883. 被引量:2
  • 2Yoo C S, Ahn I K. Low cost GPS/INS sensor fusion system for UAV navigation[C]//Proceedings of the 22nd Digital Avionic-s Systems Conference: vol.2. Piscataway, USA: IEEE, 2003: 8.A.1-1-9.
  • 3Farhad A, Marcin K, Galina O. Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sen- sor[J]. IEEE Sensors Journal, 2011, 11(1): 176-185.
  • 4Zhao H, Wang Z Y. Motion measurement using inertial sensors, ultrasonic sensors, and magnetometers with extended Kalman filter for data fusion[J]. IEEE Sensors Journal, 2012, 12(5): 943- 953.
  • 5Klose S, Wang J, Achtelik M. Markerless, vision-assisted flight control of a quadrocopter[C]//IEEE/RSJ International Confer- ence on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2010: 5712-5715.
  • 6Grzonka S, Grisetti G, Burgard W. A fully autonomous indoor quadrotor[J]. IEEE Transactions on Robotics, 2012, 28(1): 90- 100.
  • 7Meier L, Tanskanen P, Heng L. PIXHAWK: A micro aerial ve- hicle design for autonomous flight using onboard computer vi- sion[J]. Autonomous Robots, 2012, 33(1/2): 21-39.
  • 8Artieda J, Sebastian J, Campoy E Visual 3-D SLAM from UAVs[J]. Journal of Intelligent and Robotic Systems, 2009, 55(4/5): 299-321.
  • 9de Marina H G, Pereda F J, Giron-Sierra J M, et al. UAV attitude estimation using unscented Kalman filter and TRIAD[J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4465- 4474.
  • 10Mondragon I F, Olivares-Mendez M A, Campoy P, et al. Un- manned aerial vehicles UAVs attitude, height, motion estima- tion and control using visual systems[J]. Autonomous Robots, 2010, 29(1): 17-34.

共引文献59

同被引文献33

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部