期刊文献+

水下机器人试航速度的类物理数值方法预报 被引量:3

Prediction of autonomous underwater vehicle cruising velocity using a physics-based numerical method
下载PDF
导出
摘要 水下机器人试航速度是评价推进系统性能和续航能力的重要指标。针对水下机器人试航速度预报问题,本文提出类物理数值预报方法,建立水下机器人包含桨舵的全附体模型,采用多块动态混合网格方法进行网格构建和更新,编写用户自定义函数,求解六自由度方程和非定常雷诺平均NS方程进行水下机器人和螺旋桨力和速度的计算和传递,实现以螺旋桨旋转运动推进水下机器人自航的运动过程模拟。数值结果表明:水下机器人试航速度1.5 m/s对应的转速为570 r/min;自航模拟可见螺旋桨梢涡曳出,梢涡强度和螺旋桨推力随航速增加而降低。数值模拟再现了非定常运动过程中船桨舵相互作用机理,有利于水下机器人复杂操纵运动的精确预报。 The cruising velocity of an autonomous underwater vehicle(AUV) plays an important role in the evaluation of the thrust system performance and cruising endurance. This study proposed a physics-based numerical method for the prediction of the cruising velocity of the AUV. The full model of the AUV appended propeller and rudder was built. A multi-block hybrid dynamic grid method was used to mesh and re-mesh the domain. User-defined functions were programmed. Six degrees of freedom and unsteady Reynolds-averaged Navier-Stokes equations were solved to transfer forces and velocities between AUV and propeller. Thus, the free motion of the AUV pushed by the rotating propeller from stationary to uniform velocity was simulated. The numerical results showed that the rotating speed was 570 r/min at the cruising velocity of 1.5 m/s. The tip vortices were produced in self-propulsion motion. The strength of the tip vortices and propeller thrust decreased with the increase in the AUV velocity. The simulation investigated the unsteady flow field among the hull, propeller, and rudders in detail, which is helpful in conducting a precise maneuvering prediction of the AUV in complex environments.
作者 吴利红 张爱锋 李一平 封锡盛 王诗文 WU Lihong;ZHANG Aifeng;LI Yiping;FENG Xisheng;WANG Shiwen(College of Ship Building and Ocean Engineering,Dalian Maritime University,Dalian 116026,China;State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China)
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2020年第2期194-198,共5页 Journal of Harbin Engineering University
基金 国家重点研发计划(2017YFC0305901) 国家自然科学基金项目(51009016) 机器人学国家重点实验室开放课题(2016-O04) 中央高校基本科研业务费专项资金(3132017030)
关键词 自航试验 水下机器人 动网格 类物理数值模拟 螺旋桨 试航速度 计算流体力学 操纵性 self-propulsion test autonomous underwater vehicle(AUV) dynamic mesh physics-based simulation screw propeller cruising velocity computational fluid dynamics maneuverability
  • 相关文献

参考文献2

二级参考文献15

  • 1邓小刚,庄逢甘.A NOVEL SLIGHTLY COMPRESSIBLE MODEL FOR LOW MACH NUMBER PERFECT GAS FLOW CALCULATION[J].Acta Mechanica Sinica,2002,18(3):193-208. 被引量:5
  • 2张来平,王志坚,张涵信.动态混合网格生成及隐式非定常计算方法[J].力学学报,2004,36(6):664-672. 被引量:7
  • 3杨国伟,钱卫.飞行器跨声速气动弹性数值分析[J].力学学报,2005,37(6):769-776. 被引量:12
  • 4陶文铨.计算传热学的近代发展[M].北京:科学出版社,2000..
  • 5李诺.移动网格方法及其应用[D].北京:北京大学理学院,2001.
  • 6NATHAN C. PREWITT D M, BELK W S. Parallel computing of overset grids for aerodynamic problems with moving objects[J]. Progress in Aerospace Sciences,2000,36:117-172.
  • 7JOHN T B. Implicit flux-split euler scheme for unsteady aerodynamic analysis involving unstructured dynamic meshes[J]. AIAA J, 1991,29:1836-1843.
  • 8PETERSSON N A. An algorithm for assembling overlapping grid systems[J]. SIAM J Sci Comput,1990,20(6) : 1995-2022.
  • 9HENSHAW W D. A fourth-order accurate method for the incompressible navier-stokes equations on overlapping grid[J]. J Comput Phys, 1994,113 (1) :13-25.
  • 10DAVID Russell. A Cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow[J]. J Comput Phys ,2003,191 : 177-305.

共引文献106

同被引文献24

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部