期刊文献+

基于鸽视顶盖神经元动作电位的图像重建

Image reconstruction based on neuron spike signals in pigeon optic tectum
下载PDF
导出
摘要 针对从神经元响应信号中解码视觉输入的问题,提出了一种利用神经元动作电位(Spike)信号重建视觉输入的方法。首先,记录鸽视顶盖(OT)神经元的Spike信号,提取Spike发放率特征;然后,构建线性逆滤波器和卷积神经网络重建模型,实现视觉输入的重建;最后,对通道数量、时间窗口、数据时间长度、延迟时间等参数进行优化。在相同参数条件下,利用线性逆滤波器重建图像的互相关系数达到0.9107±0.0219,利用卷积神经网络模型重建图像的互相关系数达到0.9271±0.0176。重建结果表明,提取神经元Spike发放率特征并运用线性逆滤波器和卷积神经网络重建模型可以有效重建视觉输入。 Focused on the issue of decoding visual input from neuron response signal,a method to reconstruct visual input using neurons action potential(Spike)signal was proposed.Firstly,the Spike signal from the pigeon Optic Tectum(OT)neurons was recorded and the firing rate characteristics of Spike were extracted.Then,a linear inverse filter reconstruction model and a convolution neural network reconstruction model were constructed to realize the reconstruction of the visual input.Finally,the number of channels,time bin,data time length and delay time were optimized.Under the same parameter condition,the cross correlation coefficient of image reconstruction using linear inverse filter reconstruction modelreached 0.9107±0.0219,and the crosscorrelation coefficientofimage reconstruction using convolution neuralnetwork reconstruction model reached 0.9271±0.0176.The results show that the visual input can be reconstructed effectively by extracting firing rate characteristics of neuron Spike and using linear inverse filter reconstruction model and convolution neural networkreconstructionmodel.
作者 王治忠 庞晨 WANG Zhizhong;PANG Chen(School of Electrical Engineering,Zhengzhou University,Zhengzhou Henan 450001,China)
出处 《计算机应用》 CSCD 北大核心 2020年第3期832-836,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61673353) 国家自然科学基金青年科学基金资助项目(61603344) 河南省高等教育重点研究项目(15A120017)~~
关键词 视顶盖 动作电位 发放率 图像重建 互相关系数 optic tectum Spike firing rate image reconstruction cross correlation coefficient
  • 相关文献

参考文献3

二级参考文献27

  • 1Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996; 381 (6583) : 607-609.
  • 2Bell A J, Sejnowski T J. The "independent components" of natural scenes are edge filters. Vision Research, 1997; 37 (23): 3327-3338.
  • 3vanI-Iateren J H, van der Schaaf A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London, Series B : Biological Sci- ences, 1998; 265(1394) : 359-366.
  • 4HyvRrinen A, Karhunen , Oja E. Independent component analysis. USA:John Wiley & Sons, 2004.
  • 5Brunel N, Hakim V, Richardson M J E. Single neuron dynamics and computation. Current Opinion in Neurobiology, 2014; 25 : 149-155.
  • 6Knill D C, Pouget A. The Bayesian brain : the role of uncertainty in neural coding and computation. Trends in Neurosciences, 2004; 27 (12) : 712-719.
  • 7Pillow J W, Paninski L, Uzzell V J,et al. Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. The Journal of Neuroscienee, 2005 ; 25 (47) : 11003-11013.
  • 8Calabrese A, Schumaeher J W, Schneider D M, et al. A generalized linear model for estimating spectrotemporal receptive fields from re- sponses to natural sounds. PLoS One, 2011 ; 6 ( 1 ), e16104 : 1-30.
  • 9Park I M, Pillow J W. Bayesian spike-triggered covariance analysis. NIPS, 2011:1692-1700.
  • 10Park I M, Archer E W, Priebe N, et al. Spectral methods for neural characterization using generalized quadratic models. Advances in Neu- ral Information Processing Systems, 2013:2454-2462.

共引文献1760

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部