期刊文献+

Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst 被引量:3

Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst
下载PDF
导出
摘要 Photoelectrocatalytic reduction of CO2 to fuels has great potential for reducing anthropogenic CO2 emissions and also lessening our dependence on fossil fuel energy.Herein,we report the successful development of a novel photoelectrocatalytic catalyst for the selective reduction of CO2 to methanol,comprising a copper catalyst modified with flower-like cerium oxide nanoparticles(CeO2 NPs)(a n-type semiconductor)and copper oxide nanoparticles(CuO NPs)(a p-type semiconductor).At an applied potential of−1.0 V(vs SCE)under visible light irradiation,the CeO2 NPs/CuO NPs/Cu catalyst yielded methanol at a rate of 3.44μmol cm^−2 h^−1,which was approximately five times higher than that of a CuO NPs/Cu catalyst(0.67μmol cm^−2 h^−1).The carrier concentration increased by^108 times when the flower-like CeO2 NPs were deposited on the CuO NPs/Cu catalyst,due to synergistic transfer of photoexcited electrons from the conduction band of CuO to that of CeO2,which enhanced both photocatalytic and photoelectrocatalytic CO2 reduction on the CeO2 NPs.The facile migration of photoexcited electrons and holes across the p–n heterojunction that formed between the CeO2 and CuO components was thus critical to excellent light-induced CO2 reduction properties of the CeO2 NPs/CuO NPs/Cu catalyst.Results encourage the wider application of composite semiconductor electrodes in carbon dioxide reduction. Photoelectrocatalytic reduction of CO2 to fuels has great potential for reducing anthropogenic CO2 emissions and also lessening our dependence on fossil fuel energy. Herein, we report the successful development of a novel photoelectrocatalytic catalyst for the selective reduction of CO2 to methanol, comprising a copper catalyst modified with flower-like cerium oxide nanoparticles(CeO2 NPs)(a n-type semiconductor) and copper oxide nanoparticles(CuO NPs)(a p-type semiconductor). At an applied potential of-1.0 V(vs SCE) under visible light irradiation, the CeO2 NPs/CuO NPs/Cu catalyst yielded methanol at a rate of 3.44 μmol cm-2 h-1, which was approximately five times higher than thatof a CuO NPs/Cu catalyst(0.67 μmol cm-2 h-1). The carrier concentration increased by ~ 108 times when the flower-like CeO2 NPs were deposited on the CuO NPs/Cu catalyst, due to synergistic transfer of photoexcited electrons from the conduction band of CuO to that of CeO2, which enhanced both photocatalytic and photoelectrocatalytic CO2 reduction on the CeO2 NPs. The facile migration of photoexcited electrons and holes across the p–n heterojunction that formed between the CeO2 and CuO components was thus critical to excellent light-induced CO2 reduction properties of the CeO2 NPs/CuO NPs/Cu catalyst. Results encourage the wider application of composite semiconductor electrodes in carbon dioxide reduction.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期34-46,共13页 纳微快报(英文版)
基金 financially supported by the National Natural Science Foundation of China(21802089) Natural Science Foundation of Shandong Province(ZR2019BB015) The Science and Technology Plan of Shandong Province Colleges and Universities under Grant(No.J14LC16) the Natural Science Foundation of Shandong Province under Grant(No.ZR2017MB018) funding support from the Shandong Province Double Hundred Talents Program for Foreign Experts the Energy Education Trust of New Zealand the Dodd Walls Centre for Photonic and Quantum Technologies the Mac Diarmid Institute for Advanced Materials and Nanotechnology
关键词 CO2 reduction PHOTOELECTROCATALYSIS p–n heterojunction Cerium oxide Copper oxide CO2 reduction Photoelectrocatalysis p–n heterojunction Cerium oxide Copper oxide
  • 相关文献

同被引文献14

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部