期刊文献+

一种基于Radon变换的微表情识别算法 被引量:1

A Micro-expression Recognition Algorithm Based on Radon Transform
下载PDF
导出
摘要 微表情是人们处在一些与平时生活环境不同的高强度环境下试图控制和掩饰的情感表现,也是一种不曾意识到的瞬时脸部表情,持续时间短,强度弱。为了提高其准确率,提出了基于Radon变换的微表情识别算法。首先,对数据库中的视频序列进行灰度归一化、尺寸归一化和二维主成分分析法(Two-dimensional Principal Component Analysis,2DPCA)降维预处理,使用光流法对降维后图像提取运动特征;然后使用Radon变换算法对光流图像进行处理,得到对应微表情的特征值和特征图像;最后使用支持向量机进行微表情分类识别。实验结果表明,使用Radon变换后得到的微表情特征图像得到了较好的识别效果,在微表情数据集CASME和CASMEⅡ上识别率分别为81. 48%和82. 17%,通过与选取的其他方法对比说明了该方法具有更好的识别性能。 Micro-expressions are emotional expressions that people try to control and conceal in high-intensity environments different from their usual living environments. They are also instantaneous facial expressions that people do not realize. Micro-expressions have short duration and weak intensity. In order to improve their accuracy,a micro-expression recognition algorithm based on Radon transform is proposed.Firstly,gray level normalization,size normalization and two-dimensional principal component analysis( 2DPCA) dimension reduction preprocessing are carried out for video sequences in the database. After dimension reduction,motion features are extracted by optical flow method. Then,Radon transform algorithm is used to process the flow image,and the corresponding features and feature images of micro-expressions are obtained. Finally,support vector machine is used to classify and recognize micro-expressions. The experimental results show that the micro-expression feature image obtained by Radon transform has a good recognition effect. The recognition rates on CASME and CASMEⅡare 81. 48% and 82. 17% respectively. Compared with other methods,the proposed method has better recognition performance.
作者 吴进 安怡媛 韩天顺 师倩文 WU Jin;AN Yiyuan;HAN Tianshun;SHI Qianwen(School of Electronic and Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《电讯技术》 北大核心 2020年第3期251-256,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61772417,61634004,61602377) 陕西省重点研发计划(2017GY-060) 陕西省自然科学基础研究计划项目(2018JM4018)。
关键词 微表情识别 RADON变换 光流法 支持向量机 micro-expression recognition Radon transform optical flow method support vector machine
  • 相关文献

参考文献5

二级参考文献103

  • 1Cohn, J. F., Kruez, T. S., Matthews, I., Yang Y., Nguyen, M. H., Padilla M. T Torre, De la. F. (2009). Detecting depression from facial actions and vocal prosody. In: Proceedings of International Conference. Affective Computing and Intelligent Interaction. Retrieved December 28, 2009, from http://www.andrew.cmu.edu/ usor/minhhoan/papers/acii-paper_final.pdf.
  • 2Darwin, C. (1998). The Expression of the Emotions in Man and Animals, 3rd edit. Introduction, afterwords, and commentaries by Paul Ekman. London, UK: HarperCollins New York, US: Oxford University Press.
  • 3Depaulo, B. M., & Bond, C. F. (2006). Accuracy of deception judgments. Personality and Social P~ychology Review, 10, 214-234.
  • 4Ekman, P. (1992). Facial expressions of emotion: An old controversy and new findings. Philosophical Transactions of the Royal Society of London, Series B: Biological Science, B355, 63-69.
  • 5Ekman, P. (2002). MicroExpression Training Tool (METT). Retrieved April 15, 2009, from http://www.paulekman. com.
  • 6Ekman, P. (2003). Darwin, deception, and facial expression. Annals of the New York Academy of Sciences, 1000 (Emotions Inside Out: 130 Years after Darwin's The Expression of the Emotions in Man and Animals): 205-221.
  • 7Ekman, P. (2009). Lie catching and microexpressions. In C. Martin (Ed.): The Philosophy of Deception (pp. 118-133). Oxford: Oxford University Press.
  • 8Ekman, P., & Friesen, W. V. (1969). Nonverbal leakage and clues to deception. Psychiatry, 32, 88-97.
  • 9Ekman, E, & W. Fricsen.(1974). Nonverbal behavior and psychopathology. In R. J. Friedman & M. M. Katz (Eds.): The Psychology of Depression: Contemporary Theory and Research (pp. 203-224). Washington D. C.: Winston &Sons.
  • 10Ekman, P., Friesen, W. V., & Hagar, J. C. (1976/2002). Facial Action Coding System. Salt Lake City, UT: Network Information Research (Original work published 1976).

共引文献151

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部