期刊文献+

基于Adaboost首帧检测的时空上下文人脸跟踪算法 被引量:5

Spatio-Temporal Context Face Tracking Algorithm Based on Adaboost First Frame Detection
下载PDF
导出
摘要 针对时空上下文算法首帧需进行手动框选及选择偏差带来后续跟踪干扰的不足,提出利用Adaboost算法进行首帧检测,引入Kalman预测机制辅助时空上下文算法进行跟踪。当出现遮挡、抖动等问题时,保证跟踪稳定地进行,提高算法鲁棒性。在Shelter1等3组公共数据集上进行对比实验的结果表明,该算法能实现首帧自动检测功能,后续跟踪算法的鲁棒性及跟踪效果也得到明显提升。 Aiming at the problem that the first frame needed to be manually selected and the subsequent tracking interference was caused by selection deviations in the spatio-temporal context tracking algorithm,we proposed to use Adaboost algorithm to detect the first frame and introduce Kalman prediction mechanism to assist spatio-temporal context tracking algorithm.When occlusion,jitter and other problems occurred,it could ensure the stability of tracking and improve the robustness of the algorithm.Comparative experiments were carried out on three public data sets,such as Shelter1.The experimental results show that the proposed algorithm can realize the automatic detection function of the first frame,and the robustness and tracking effect of the subsequent tracking algorithm are also significantly improved.
作者 张尧 才华 李心达 米晓红 孙俊喜 ZHANG Yao;CAI Hua;LI Xinda;MI Xiaohong;SUN Junxi(School of Electronic Information Engineering,Changchun University of Science and Technology,Changchun 130022,China;Changchun China Optics Science and Technology Museum,Changchun 130117,China;School of Management,Henan University of Science and Technology,Luoyang 471023,Henan Province,China;School of Information Science and Technology,Northeast Normal University,Changchun 130117,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2020年第2期314-320,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11275046) 吉林省科技发展计划项目(批准号:20170203005GX).
关键词 时空上下文 ADABOOST算法 KALMAN滤波 视觉跟踪 spatio-temporal context Adaboost algorithm Kalman filter visual tracking
  • 相关文献

参考文献7

二级参考文献51

  • 1唐亮,谢维信,黄建军,肖志级.城市航空影像中基于模糊Retinex的阴影消除[J].电子学报,2005,33(3):500-503. 被引量:19
  • 2罗明刚,李一民,曾素娣.基于Adaboost算法的人脸检测研究[J].计算机与数字工程,2007,35(2):7-8. 被引量:10
  • 3Levi K, Weiss Y. Learning object detection from a small number of examples: The importance of good features. Proc. of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D C, USA. IEEE. 2004. II-53-II-60.
  • 4Dalal N, Triggs B. Histograms of oriented gradientsfor human detection. Proc. of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE. 2005. 886-893.
  • 5Trefny'j MJ. Extended set of local binary patterns for rapid object detection. Proc. of the Computer Vision Winter Workshop. Nove Hrady, Czech Republic: Czech Pattern Recognition Society. 2010. 1589-1596.
  • 6Wang X, Han TX, Yan S. An HOG-LBP human detector with partial occlusion handling. Proc. of IEEE 12th International Conference on Computer Vision. Kyoto, Japan. IEEE Computer Society. 2009. 32-39.
  • 7Viola P, Jones M. Robust real-time object detection. Technical Report 2001/01, Compaq CRL, 2001.
  • 8Viola P, Jones M. Rapid Object Detection Using a Boosted Cascade of Simple Features. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition. Kauai, Hawaii, USA, 2001.
  • 9Chai C, Wang YL. Face Detection Based on Extended Haar_Like Features. Proc. of IEEE Conf. on Mechanical and Electronics Engineering(ICMEE). 2010.
  • 10Babenko B, Yang M H, Belongie S. Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

共引文献2327

同被引文献59

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部