摘要
通过磁通耦合的方法将两个磁通神经元耦合,建立耦合神经元模型。首先,利用Routh-Hurwitz判据分析平衡点的稳定性,并计算该模型的唯一平衡点;其次,由Hopf分岔定理得到分岔解析解,并研究模型的分岔方向及分岔周期解的稳定性;最后,通过数值仿真模拟模型的动力学行为。结果表明,在一定参数范围内,随着耦合强度的增加,模型产生亚临界Hopf分岔,同时出现倒倍周期、加周期分岔现象和较多的周期窗口,且增加外界刺激电流可诱导尖峰放电。
Two magnetic flux neurons were coupled by magnetic flux coupling,and the coupled neuron model was established.Firstly,Routh-Hurwitz criterion was used to analyze the stability of the equilibrium point and calculate the unique equilibrium point of the model.Secondly,the analytic solution of bifurcation was obtained by Hopf theorem,and the bifurcation direction of the model and the stability of bifurcation periodic solution were studied.Finally,the dynamic behavior of the model was simulated by numerical simulation.The results show that,within a certain range of parameters,with the increase of the coupling strength,the model generates a sub-critical Hopf bifurcation,and at the same time,the phenomenon of inverted doubling cycle,plus cycle bifurcation and more periodic windows appear,and increasing the external stimulation current can induce the spike discharge.
作者
于欢欢
安新磊
路正玉
王文静
YU Huanhuan;AN Xinlei;LU Zhengyu;WANG Wenjing(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第2期388-396,共9页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11962012)
甘肃省自然科学基金(批准号:17JR5RA096).