期刊文献+

导电硅橡胶泡沫材料的制备与性能研究 被引量:8

Preparation and properties of conductive silicone rubber foams
下载PDF
导出
摘要 在硅橡胶基体中添加碳系导电填料(CB、CNT),利用超临界CO2发泡技术,制备了CB/硅橡胶、CNT/硅橡胶以及CB/CNT/硅橡胶复合导电泡沫材料,研究了混料胶料的流变行为以及发泡前后复合材料电导率、电磁屏蔽效能的变化规律。结果表明,CB与CNT均会阻碍硅橡胶复合材料的初始交联,导电填料含量越多交联越迟缓。CB/CNT/硅橡胶复配体系中更容易形成导电通路,当CB/CNT(1∶1)总含量为8%(质量分数)时,硅橡胶复合材料的电导率可达10^-5 S/cm,其电磁屏蔽效能(EI)为14~26 dB。发泡后,硅橡胶复合材料的电导率及EI值均有所下降。 Carbon-based conductive fillers(CB,CNT)were added to the silicone rubber matrix,and CB/silicone rubber,CNT/silicone rubber and CB/CNT/silicone rubber foams were prepared by supercritical CO2 foaming technology.The rheological behavior of the compound and the electrical conductivity and electromagnetic shielding effectiveness of the composite materials were studied.The results show that both CB and CNT could hinder the initial crosslinking of the silicone rubber composite.The conductive path was easier to form in the CB/CNT/silicone rubber compound system.When the total content of CB/CNT(1∶1)was 8 wt%,the conductivity of the silicone rubber composite could reach 10^-5 S/cm.The electromagnetic shielding effectiveness(EI)was 14~26 dB.After foaming,both of the electrical conductivity and the EI value of the silicone rubber composites decreased.
作者 贾亚兰 张文焕 刘涛 罗世凯 JIA Yalan;ZHANG Wenhuan;LIU Tao;LUO Shikai(Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China;School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China)
出处 《功能材料》 EI CAS CSCD 北大核心 2020年第3期3056-3065,共10页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51773186,51503189)
关键词 超临界发泡 硅橡胶泡沫 导电性能 电磁屏蔽 supercritical foaming silicone rubber foam electrical conductivity electromagnetic shielding
  • 相关文献

参考文献3

二级参考文献60

  • 1汤浩,陈欣方,罗云霞.复合型导电高分子材料导电机理研究及电阻率计算[J].高分子材料科学与工程,1996,12(2):1-7. 被引量:54
  • 2[1]Stauffer D,Aharnoy A.Introduction to percolation theory[M].London: Taylor & Francis,1991.
  • 3[2]Mclachlan D S,Blaszkiewicz M,Newnham R E.Electrical resistivity of composites[J].J Am Ceram Soc,1990,73(8):2187-2203.
  • 4[3]Simmons J G.Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[J].J Appl Phys,1963,34(6):1793.
  • 5[4]Medalia A I.Electrical conduction in carbon black composites[J].Rubber Chem Tech,1986,59(3):432-454.
  • 6[5]Van Beek,Van Pul.Internal field emission in carbon black-loaded natural rubber vulcanizates[J].Journal of Applied Polymer Science,1962,24:651-655.
  • 7[6]Ruschau G R,Yoshikawa S,Newnham R E.Resistivitiesof conductive composites[J].J Appl Phys,1992,72(3):953-959.
  • 8[7]Fish D,Gung-bin Zhou,Smid J.Ring opening polymerization of cyclotetrasiloxaneswith large substituents[J].PolymPreprint,1990,31(1):36-37.
  • 9[9]Zallen R.The physics of amorphous solids[M].New York:Wiley,1983,ch4.
  • 10[10]Carmona R,Conet R,Delhaes P.Piezoresistivity of heterogeneous solids[J].J Appl Phys,1987,61(7):2550-2557.

共引文献73

同被引文献639

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部