期刊文献+

旋转超导电机发展现状 被引量:3

Development Status of Rotating Superconducting Motor
下载PDF
导出
摘要 大容量旋转超导电机在风力发电、舰船驱动等低速直驱应用领域具有广阔的应用前景。依据是否采用低温耦合传输装置实现低温冷却介质的传输和励磁功率的输入,将旋转超导电机分为动态密封和静态密封超导电机两类。分析了动态密封超导电机的常用定子、转子结构形式及其优缺点。针对静态密封超导电机,以转子分段式磁通切换结构、场调制双定子结构、单体励磁分极式结构等典型拓扑为例,揭示了其能够实现冷却系统静态密封形式的本质原因。最后,对两类超导电机面临的超导励磁绕组失超这一共性问题进行了探讨,从电机本体结构层面,给出了静态密封超导电机抑制电枢反应磁场对超导线圈影响的策略和方法。 Large-capacity rotating superconducting(SC)motor has bright application prospects in low-speed direct-drive applications such as wind power generation and ship driving.SC motors are classified into rotating and stationary seal SC motors,depending on whether a cryogenic coupling transmission device is used to achieve the transmission of cryogenic medium and the input of excitation power.Stator and rotor configurations and their advantages and disadvantages of rotating seal SC motors are analyzed and summarized,respectively.For stationary seal SC motors,typical topologies such as segmented-rotor flux-switching motor,field-modulation double-stator motor and single-excitation pole-divided motor are used as examples to reveal the essential reason for achieving stationary seal of the cooling system.Finally,the common problems faced by these two types of SC motors are discussed.From the configuration level of the motor,the strategies and methods of suppressing the influence of the armature reaction magnetic field on the SC coil are given for the stationary seal SC motors.
作者 王玉彬 WANG Yubin(College of New Energy,China University of Petroleum,Qingdao 266580,China)
出处 《电机与控制应用》 2020年第2期1-8,共8页 Electric machines & control application
基金 国家自然科学基金项目(51777216,51277183)。
关键词 超导电机 动态密封 静态密封 失超 superconducting motor rotating seal stationary seal quench
  • 相关文献

参考文献3

二级参考文献56

  • 1魏凤春,张恒,蔡红,陈东明.飞轮储能技术研究[J].洛阳大学学报,2005,20(2):27-30. 被引量:14
  • 2Hull J R, Day A C. Development of flywheel energy system[R]. DOE Annual Peer Review Meeting, 2002.
  • 3Nagaya S, Kashima N, Minami M, et al. Study on high temperature superconducting magnetic bearing for 10kWh flywheel energy storage system[J]. IEEE Trans. Appl. Supercond., 2001, 11(1): 1649-1652.
  • 4Nagaya S, Kashima N, Minami M, et al. Study on the characteristics of high temperature superconducting magnetic thrust bearing for 25kWh flywheel[J]. Physica C, 2001, 357-360(Part 1): 866-869.
  • 5Yamauchi Y, Uchiyama N, Suzuki E, et al. Development of 50kWh-class superconducting flywheel energy storage system[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2006, S25: 16-18.
  • 6Matsunaga K, Tomita M, Yamachi N, et al. Fabrication and evaluation of superconducting bearing module for 10kWh flywheel[J]. Physica C, 2002, 378-381(Part 1): 883-887.
  • 7Bornemann H J, Tonoli A, Ritter T, et al. Engineering prototype of a superconducting flywheel for long term energy storage[J]. IEEE Trans. Appl. Supercond., 1995, 5(2): 618-621.
  • 8Werfel F N, Floegel Delor U, Riedel T, et al. 250 kW flywheel with HTS magnetic bearing for industrial use[J]. J. Phys.: Conf. Ser., 2008, 97: 012206.
  • 9Siems S O, Canders W R, Walter H, et al. Superconducting magnetic bearings for a 2MW/10 kwh class energy storage flywheel system[J]. Supercond. Sci. Technol., 2004, 17(5): S229-S233.
  • 10Fang J R, Lin L Z, Yan L G, et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Trans. Appl. Supercond., 2003, 11(1): 1657-1660.

共引文献51

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部