期刊文献+

混合动力客车锂离子电池组散热分析与优化 被引量:1

Heat Dissipation Analysis and Optimization of Li-Ion Battery Pack in Hybrid Bus
下载PDF
导出
摘要 针对某客车集团一辆插电式混合动力客车在实车实验时出现的锂离子动力电池组温度过高的问题,在AMESim软件中搭建了该客车锂离子电池组的串联风冷散热模型,得到了锂离子电池组的实时温度变化情况,分析了电池组温度过高的原因,提出优化该客车原有电池组散热结构的必要性;针对原因进行散热结构的优化设计,利用Fluent软件仿真分析锂离子电池组的温度场和速度场,验证优化效果。结果表明所提出的优化方案能够解决本客车出现的散热问题,达到良好的散热效果。 Contrapose the problem of the high temperature of the Li-ion power battery in a vehicle experiment of a plug-in hybrid bus of a passenger car company, the series air-cooled heat dissipation model of Li-ion battery of this bus was built with AMESim software.The temperature change of the Li-ion battery pack was obtained, the reason for the high temperature of the battery pack was analyzed, and the necessity of optimizing the cooling structure of the existing battery pack was proposed. The optimization design of the heat dissipation structure was carried out, and the temperature field and velocity field of the Li-ion battery pack were analyzed by Fluent software to verify the optimization effect.The results show that the proposed optimization solution can solve the problem of heat dissipation of the bus, and achieve a good cooling effect.
作者 韩磊 赵津 肖光飞 胡秋霞 HAN Lei;ZHAO Jin;XIAO Guang-fei;HU Qiu-xia(Department of Mechanical Engineering,Guizhou University,Guizhou Guiyang550025,China)
出处 《机械设计与制造》 北大核心 2020年第3期177-180,共4页 Machinery Design & Manufacture
基金 黔科合平台人才([2017]5630)。
关键词 混合动力客车 锂离子电池组 散热结构 分析优化 Hybrid Bus Li-Ion Battery Pack Heat Dissipation Structure Analysis and Optimization
  • 相关文献

参考文献4

二级参考文献47

  • 1张鹏,孟进,许英.镍氢电池的原理及与镍镉电池的比较[J].国外电子元器件,1997(5):16-18. 被引量:6
  • 2E. Hansen,L. Wilhehn,N, Karditsas. Full system Nickel -Metal Hydride Battery Packs for Hybrid Electric Vehicle Applications,2002 IEEE.
  • 3KEYSER M, MIHALIC M, PESARAN A. Thermal characterization of plastic lithium ion cells [C]//The 18^th International Seminar and Exhibit on Primary and Secondary Batteris.Fort Lauderdale,Florida: Advanced Battery Technology, 2001.
  • 4CHEN S C, WANG C C. Thermal analysis of lithium-ion batteries [J]. J Power Sources, 2005, 140:111-124.
  • 5BERNARDI D, PAWLIKOWSKI E, NEWMAN J.A general energy balance for battery systems [J]. J Electrochemical Society, 1985, 132: 1.
  • 6BOTTE G G,JOHNSON B A,WHITE R E.lnfluence of some design variables on the thermal behavior of a lithium-ion cell [J].J Electrochemical Society, 1999, 146: 3.
  • 7HALLAJ S A, MALEKI H, HONG J S, et al. Thermal modeling and design considerations of lithium-ion batteries [J]. J Power Sources, 1999, 83: 1-8.
  • 8SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. J Power Sources, 2001, 99: 70-77.
  • 9FUNAHASHI A, KIDA Y, YANAGIDA K, et al. Thermal simulation of large-scale lithium secondary batteries using a graphite-coke hybrid carbon negative electrode and LiNi0.7Co0.3O2 positive electrode [J]. J Power Sources, 2002, 104: 248-252.
  • 10HALLAJ S A, SELMAN J R.Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications [J]. J Power Sources, 2002, 110: 341-348.

共引文献87

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部