期刊文献+

单原子催化剂合成方法 被引量:5

Preparation of Single Atom Catalysts
原文传递
导出
摘要 单原子催化剂作为一种原子尺度的催化剂,在制氢、CO氧化及光催化等领域均具有广阔的应用前景。大量实验结果和理论计算证实了金属单原子和载体之间的相互作用,及由两者之间电荷转移引起的电子结构改变是单原子催化剂具有高的选择性和催化活性的主要原因。本文着重综述了近年来共沉淀法、化学还原法及浸渍法所制备单原子催化剂的催化性能,并进行展望。 Single atom catalysts,as catalysts with atomic scale,have a wide range of applications in the fields of hydrogen production,CO oxidation,photo catalysts,etc.Extensive efforts of experimental/theoretical studies show that the strong metal support interactions and the changes in electronic structure are the main reasons for the high selectivity and catalytic activity of the single atom catalysts.This paper mainly summarizes the recent researches on the preparation methods including coprecipitation method,successive reduction method and wetimpregnation method,catalytic performance and high catalytic selectivity of single atom catalysts.And finally,the prospects for future investigations of single atom catalysts are proposed.
作者 吴文浩 雷文 王丽琼 王森 张海军 Wenhao Wu;Wen Lei;Liqiong Wang;Sen Wang;Haijun Zhang(The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《化学进展》 SCIE CAS CSCD 北大核心 2020年第1期23-32,共10页 Progress in Chemistry
基金 国家自然科学基金项目(No.51672194,51872210) 湖北省教育厅高等学校优秀中青年科技创新团队计划(No.T201602) 湖北自然科学基金创新群体项目(No.2017CFA004)资助。
关键词 单原子催化剂 共沉淀法 化学还原法 浸渍法 single atom catalysts coprecipitation method successive reduction method wet-impregnation method
  • 相关文献

参考文献4

二级参考文献71

  • 1LIU Xiangming1, CHEN Su1, YIN Shijin1 & MEI Zhinan2 1. Department of Biological & Medical Engineering, South-Central University for Nationalities, Wuhan 430074, China,2. College of Chemistry & Biological Technology, South-Central University for Nationalities, Wuhan 430074, China.Effects of dragon’s blood resin and its component loureirin B on tetrodotoxin-sensitive voltage-gated sodium currents in rat dorsal root ganglion neurons[J].Science China(Life Sciences),2004,47(4):340-348. 被引量:15
  • 2Wilson 0 M, Scott R W, Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2005, 127(3): 1015.
  • 3Mazumder , Chi M F, Mankin M N, Liu Y, Metin O, Sun D H, More K L, Sun S 14. Nano Lett. , 2012, 12: 1102.
  • 4Yaug Y, Zhang F, Wang H L, Yao Q L, Chen X S, Lu Z H. J. Nanomaterials, 2014, DOI: 10. 1155/2014/294350.
  • 5Liu X W, Liu J Y, He W, Huang Q H, Yang H. J. Colloid Interface Sci., 2010, 344(1): 132.
  • 6Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
  • 7Chen J L, Liu X, ZhangFZ. Chem. Eng. J. , 2015, 259: 43.
  • 8Singh H P, Gupta N, Sharma S K, Sharma R K. Colloids Surf A , 2013, 416: 43.
  • 9Tsal M C, Yeh T K, Tsai C H. Int. J. Hydrogen Energy, 2011 36(14) : 8261.
  • 10Vijayakumar J, Mohan S, Kumar S A, Suseendiran S R Pavithra S. Int. J. Hydrogen Energy, 2013, 38(25) : 10208.

共引文献30

同被引文献46

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部