期刊文献+

基于高斯核主成分分析的多通道拉曼光谱重建 被引量:3

Multi-channel Raman Spectral Reconstruction Based on Gaussian Kernel Principal Component Analysis
下载PDF
导出
摘要 针对多通道拉曼成像系统常会受荧光背景、噪声等非线性因素的影响而导致拉曼光谱重建结果一般的问题,提出了一种基于高斯核主成分分析的拉曼光谱重建算法.首先利用相似度因子对标定样本数据集进行预处理,其次通过高斯核函数将标定样本以非线性形式映射至高维特征空间,接着在特征空间中对映射后的数据集提取基函数并通过伪逆法求得与之对应的基函数系数.使用聚甲基丙烯酸甲酯作为测试样本,并引入均方根误差来评估拉曼光谱重建结果的准确性.实验结果表明,相比传统的伪逆法与维纳估计法,该算法具有更高的重建精度及抗噪能力,且能有效降低标定样本中不良数据和成像系统中非线性因素对拉曼光谱重建的影响.因此,该算法可以为多通道拉曼快速成像提供一种有效的拉曼光谱重建算法. The multi-channel Raman imaging system is often affected by the nonlinear factors such as fluorescence background and noise, which reduces the Raman spectral reconstruction accuracy.Therefore,a reconstruction algorithm based on Gaussian kernel principal component analysis was proposed,in which the calibration samples are optimized by similarity factor;Then the calibration samples were mapped to high-dimensional space in a nonlinear form by using kernel function;The basis function was extracted from the mapped data set,and the basis function coefficients were obtained by pseudo-inverse method.Polymethyl methacrylate was used in the experiment and the Raman spectral reconstruction accuracy was evaluated in terms of relative root mean square error.The experimental results show that the proposed algorithm has higher reconstruction accuracy and anti-noise property than the traditional pseudo-inverse and wiener estimation methods.And the proposed algorithm can effectively reduce the impact of bad data and nonlinear factors in the calibration samples and imaging system.Therefore,the proposed algorithm can provide an effective Raman spectral reconstruction algorithm for multi-channel Raman imaging.
作者 王昕 康哲铭 刘龙 范贤光 WANG Xin;KANG Zhe-ming;LIU Long;FAN Xian-guang(Department of Instrumental and Electrical Engineering,Xiamen University,Xiamen,Fujian 361005,China;Fujian Key Laboratory of Universities and Colleges for Transducer Technology,Xiamen Key Laboratory of Optoelectronic Transducer Technology,Xiamen,Fujian 361005,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2020年第3期124-133,共10页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.21874113,21974118).
关键词 多通道成像 拉曼光谱 重建 核主成分分析 核映射 聚甲基丙烯酸甲酯 Multi-channel imaging Raman spectra Reconstruction Kernel principal component analysis Kernel mapping Polymethyl methacrylate
  • 相关文献

参考文献3

二级参考文献34

  • 1郭建锋,朱长青.二元样条最小二乘在地图投影数据加密中的应用[J].测绘工程,2000,9(4):25-27. 被引量:4
  • 2张延会,吴良平,孙真荣.拉曼光谱技术应用进展[J].化学教学,2006(4):32-35. 被引量:32
  • 3窦艳丽,张万喜,张玉杰,周华,汪冬梅,徐经伟.傅立叶变换拉曼光谱和红外光谱鉴别塑料[J].分析化学,2006,34(11):1615-1618. 被引量:30
  • 4ZHANG Deng-hui, YU Le. Support vector machine based classification for hyperspectral remote sensing images after minimum noise fraction rotation transformation[C]. Proceeding of internet computing and information services conference, September, 2011.
  • 5HEMISSI S, ETTABAA K, FARAH I, et al. Towards mu!titem- poral hyperspectral images classification based on 3I) signaure model and matching [C]. In Proceedings of the Hyperspectral 2010 Workshop.Processing, 2006, ICASSP 2006 Proceedings. 2006 IEEE International Conference on(Vol. 2, pp ii-ii). IEEE.
  • 6MURAT D, DAVID L. A cost effective semi-supervised classifier approach with kernels [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1) : 264-270.
  • 7GUSTAVO C V, BRUZZONE L. Kernel-based methods for hyperspeetral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6) : 1-12.
  • 8CANTY M J, NIELSEN A A. Linear and kernel methods for multivariate change detection [ J ]. CornputersGeosciences, 2012, 38: 107-114.
  • 9FAUVEL M, CHANUSSOT J. BENEDIKTSSON j A. Evaluation of kernels for multiclass classification of hyperspectral remote sensing data[C]. Acoustics, Speech and Signal.
  • 10MATHUR M. KOCH M. Computer processing of remotelysensed images(fourth edition)[M]. New York: A John Wiley Sons, Ltd. , Publication, 2011, 229 -284.

共引文献21

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部