期刊文献+

基于MCKD和改进HHT多尺度模糊熵的齿轮故障诊断方法 被引量:3

Gear fault diagnosis method based on MCKD and multiscale fuzzy entropy of improved HHT
下载PDF
导出
摘要 针对齿轮故障信号常伴有大量噪声,故障特征难以提取的问题,提出一种基于最大相关峭度解卷积(MCKD)和改进希尔伯特-黄变换(HHT)多尺度模糊熵的故障诊断方法。首先采用MCKD算法对采集到的齿轮振动信号进行降噪处理,以提高信号的信噪比;然后利用自适应白噪声完备经验模态分解(CEEMDAN)对降噪后信号进行分解,获得一系列不同尺度的固有模态函数(IMF),并通过相关系数-能量的虚假IMF评价方法选取对故障敏感的模态分量;最后计算敏感IMF分量的模糊熵,将获得的原信号多尺度的模糊熵作为状态特征参数输入最小二乘支持向量机(LS-SVM)中,对齿轮的故障类型进行诊断。实测信号的诊断结果表明,该方法可实现齿轮故障的有效诊断。 Aiming at the gear fault vibration signal often with lots of noise and fault feature of gear is weak,a gear fault diagnosis method based on maximum correlated kurtosis deconvolution(MCKD)and multiscale fuzzy entropy of improved Hilbert-Huang trasform is proposed.Firatly,the MCKD technique is used to eliminate the noise in the signal,to improve the signal noise ratio of the signal.Then,the signal is decomposed by complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),obtain a series of intrinsic modal functions(IMFs)in different scales,and select the fault-sensitive modal component by the correlation coefficient-energy false IMF evaluation method.Finally,calculating the fuzzy entropy of sensitive IMF components,the obtained multiscale fuzzy entropy of the original signal is used as a state feature parameter input into the least squares support vector machine(LS-SVM)to diagnose the fault type of the gear.The results of a gear fault signals indicate that the proposed method can effectively diagnosis gear fault.
作者 朱立达 ZHU Lida(Mechatronics and Intelligence Department,Jilin Vocational College of Industry and Technology,Jilin 132013,CHN)
出处 《制造技术与机床》 北大核心 2020年第3期114-118,154,共6页 Manufacturing Technology & Machine Tool
关键词 最大相关峭度解卷积 自适应白噪声完备经验模态分解 多尺度模糊熵 齿轮 故障诊断 maximum correlated kurtosis deconvolution complete ensemble empirical mode decomposition with adaptive noise multiscale fuzzy entropy gear fault diagnosis
  • 相关文献

参考文献5

二级参考文献54

  • 1欧阳森.基于顺序形态方法的电力信号处理方法[J].电工电能新技术,2005,24(1):45-48. 被引量:10
  • 2沈路 周晓军 张文斌 等.基于形态滤波与灰色关联度的滚动轴承故障诊断.振动与冲击,2009,(11):25-28.
  • 3HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London, 1998, 454(1): 903-995.
  • 4HUANG N E, SHEN Z, LONG S R. A new view of nonlinear water waves: The Hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417-457.
  • 5LIU B, RIEMENSCHNEIDER S, XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrmn [J]. Mechanical Systems and Signal Processing, 2006, 20. 718-734.
  • 6RAI V K, MOHANTY A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform [J]. Mechanical Systems and Signal Processing, 2007, 21: 2607-2615.
  • 7BABU T R, SRIKANTH S, SEKHAR A S. Hilbert-Huang transform for detection and monitoring of crack in a transient rotor [J]. Mechanical Systems and Signal Processing, 2008, 22: 905-914.
  • 8LI Y J, TSE P W, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine [J]. Mechanical Systems and Signal Processing, 2010, 24: 193-210.
  • 9WU Z H, HUANG N E. Ensemble empirical mode decomposition: A noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1 : 1-41.
  • 10CHU F L, LU W X. Experimental observation of nonlinear vibrations in a rub-impact rotor system [J]. Journal of Sound and Vibration, 2005, 283: 621-643.

共引文献267

同被引文献11

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部