期刊文献+

Walsh码软扩频信号降噪算法 被引量:2

Noise reduction algorithm of Walsh code soft spread spectrum signal
下载PDF
导出
摘要 针对低信噪比(signal-to-noise ratio,SNR)条件下,Walsh码软扩频信号盲解扩以及多址信号盲分离难以实现的问题,提出一种Walsh码软扩频信号降噪算法。首先,采用经验模态分解(empirical mode decomposition,EMD)算法将Walsh码软扩频信号分解为有限个本征模态函数(intrinsic mode function,IMF),分界点位置可通过Walsh码软扩频信号和噪声的IMF自相关函数收敛速度的差异进行判断。然后,采用小波软阈值滤波算法处理分界点之前的IMF。最后,利用处理后的低阶IMF和分界点后的IMF重构Walsh码软扩频信号,减少由于降噪造成的信号损失。仿真结果表明,在一定低SNR范围内,降噪算法以较低误码率(bit error rate,BER)实现解调,信号损失较少。 In order to solve the problem of soft spread spectrum signals with low signal-to-noise ratio(SNR)so that it is difficult to realize blind dispreading and blind separation,an improved soft spread spectrum noise reduction algorithm is presented.This algorithm uses the empirical mode decomposition(EMD)algorithm to realize the soft spread spectrum signal denoising,judges the location of the dividing point according to the difference between the soft spread spectrum signal and the noise auto-correlation function and applies wavelet threshold filtering to the intrinsic mode function(IMF)component before the dividing point.Finally,the soft spread spectrum signals are constructed by processed low order IMF components and IMF components after the dividing point.The algorithm makes use of lower IMF components and judges the location of the dividing point according to the auto-correlation characteristics of the IMF component to reduce the signal loss caused by noise reduction.Simulation results show that within a certain SNR range,the denoising algorithm achieves demodulation with low bit error rate(BER)and less signal loss.
作者 张丹娜 钱锋 冯辉 闻年成 ZHAGN Danna;QIAN Feng;FENG Hui;WEN Niancheng(College of Electronic Countermeasures,National University of Defense Technology,Hefei 230037,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第4期773-780,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61671453) 国防科技大学自然科学基金(ZK18-03-19)资助课题
关键词 WALSH码 软扩频信号 降噪 经验模态分解算法 Walsh code soft spread spectrum signal noise reduction empirical mode decomposition algorithm
  • 相关文献

参考文献8

二级参考文献78

共引文献64

同被引文献34

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部