期刊文献+

基于时间序列挖掘的合成旅装备维修保障能力预测 被引量:9

Prediction of equipment maintenance support capability of synthetic brigade based on time series mining
下载PDF
导出
摘要 针对现有的预测方法参数较多、精确度不高的问题,采用了时间序列挖掘的方法对合成旅未来一定时期内的装备维修保障能力进行预测。首先建立了指标体系,利用"装备云"平台相关数据对指标及装备维修保障能力随时间变化的序列进行计算;然后对多元时间序列进行线段化拟合、聚类、符号化表达、Apriori关联挖掘,通过差分整合移动平均自回归-支持向量回归组合模型及反向传播神经网络对合成旅装备维修保障能力进行预测,最后通过事例验证了本文所提出的方法。 In view of the problem that there are too many parameters in the existing prediction method and the accuracy is not high,the time series mining method is used to predict the equipment maintenance support capability of the synthetic brigade in a certain period of time in the future.Firstly,the index system is established and the data of the"equipment cloud"platform is used to calculate the sequence of indicators and equipment maintenance support ability.Then,the segmentation fitting,clustering,symbolic expression and Apriori association mining are applied to the multivariate time series.The autoregressive integrated moving average-support vector regression(ARIMA-SVR)model and back propagation(BP)neural network are used to predict the equipment maintenance support capability of the synthetic brigade.Finally,the proposed method is verified by an example.
作者 宋星 贾红丽 王谦 赵汝东 SONG Xing;JIA Hongli;WANG Qian;ZHAO Rudong(Department of Equipment Command and Management,Shijiazhuang Campus,Army Engineering University,Shijiazhuang 050003,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2020年第4期878-886,共9页 Systems Engineering and Electronics
基金 军内科研计划项目(012016012600B12102)资助课题
关键词 时间序列挖掘 合成旅 装备维修保障 APRIORI算法 差分整合移动平均自回归 支持向量回归机 预测 time series mining synthetic brigade equipment maintenance support Apriori algorithm autoregressive integrated moving average(ARIMA) support vector regression(SVR) prediction
分类号 E919 [军事]
  • 相关文献

参考文献3

二级参考文献87

  • 1王辉青.作战实验若干基本理论问题探讨[J].军事运筹与系统工程,2008,22(1):3-8. 被引量:20
  • 2邓桂龙,刘智慧,贾志东.作战仿真实验数据关联规则挖掘研究[J].军事运筹与系统工程,2008,22(4):46-50. 被引量:12
  • 3Wu X D, Zhu X Q, Wu G Q, Ding W. Data mining with big data. IEEE Transactions on Knowledge and Data Engi- neering, 2014, 26(1): 97-107.
  • 4Syed A R, Gillela K, Venugopal C. The future revolution on big data. International Journal of Advanced Research in Computer and Communication Engineering, 2013, 2(6): 2446-2451.
  • 5Condliffe J. The problem with big data is that nobody und- erstands it [Online], available: http://gizmodo.com/59062- 04/the-problem-wit h-big-dat a-is-t hat- nobody-understan- ds-it, April 30, 2012.
  • 6Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A H. Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute Report [Online], available: http://www.mckinsey.com/insig hts/mgi/research/technology_and_innovation/big_data_the_ next_frontier_for_innovation, June, 2011.
  • 7Halevi G, Moed H. The Evolution of big data as a research and scientific topic: overview of the literature. Special Issue on Big Data, Research Trends, 2012, (30): 1-37.
  • 8Ginsberg J, Mohebbi M H, Patel R S, Brammer L, Smolinski M S, Brilliant L. Detecting influenza epidemics using search engine query data. Nature, 2009, 457(7232): 1012-1014.
  • 9Preis T, Moat H S, Stanley H E. Quantifying trading be- havior in financial markets using Google trends. Scientific Reports, 2013, 3:1684.
  • 10钟路音.工业数据增速是其他大数据领域的两倍.人民邮电报.

共引文献109

同被引文献103

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部