期刊文献+

高光谱遥感影像与高程数据融合方法综述 被引量:7

A review of fusion methods of hyperspectral and LiDAR images
下载PDF
导出
摘要 高光谱遥感和激光雷达(light detection and ranging,LiDAR)是2种常见的遥感手段,各自具有不同的特点.高光谱图像能够很好地表征地物的光谱信息,反映出其材料、质地等特点,而激光雷达能够高效、精确地获取地面的高程数据.将这两种数据结合,能够优势互补,对地物实现更加精确的智能探测与识别,在植被分析、城市规划、气候建模等领域均有应用.为了更好地了解该领域目前的研究现状,把握未来发展方向,对近年来的高光谱影像和激光雷达数据融合方法进行了整理,按照基于形态学特征和深度学习的两大类分别进行介绍,总结这这些方法的特点.最后,对未来的发展方向进行了展望,分析了该领域未来的发展趋势. Hyperspectral imagery(HSI)and light detection and ranging(LiDAR)are two common methods of remote sensing with different characteristics.HSI can well represent the spectral information of land cover,containing the material,texture and other characteristics of the targets,while LiDAR is able to acquire the elevation data of the land cover efficiently and accurately.The integration of both types of remote sensing data leads to more accurate intelligent detection and recognition of land cover,which is already applied in the fields of vegetation analysis,urban planning and climate modeling.In order to better understand the current research status and the future development orientation in this field,this paper gives an incisive analysis of the HSI and LiDAR data fusion methods in recent years according to two major categories based on morphological features and deep learning.Finally,it predicts its future development orientation.
作者 杜星乾 侯艳杰 唐轶 DU Xing-qian;HOU Yan-jie;TANG Yi(Key Laboratory of Spectral Imaging Technology CAS,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an,Shaanxi 710119,China;University of Chinese Academy of Sciences,Beijing 100049,China;Taiyuan Satellite Launch Center,Taiyuan 030027,China;School of Mathematics and Computer Science,Yunnan Minzu University,Kunming 650500,China)
出处 《云南民族大学学报(自然科学版)》 CAS 2020年第1期47-58,共12页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(61462096,61866040,61561053).
关键词 高光谱遥感 激光雷达 数据融合 深度学习 形态学特征 hyperspectral imagery LiDAR data fusion deep learning morphological profile
  • 相关文献

参考文献9

二级参考文献64

  • 1刘志辉,王红娟,裴欢,田万荣,菊春燕,周绪.基于RS和GIS技术的近40a新疆昌吉州冰川变化分析[J].新疆大学学报(自然科学版),2005,22(2):127-133. 被引量:8
  • 2杨存建,刘纪远,黄河,许辉熙,党承林.热带森林植被生物量与遥感地学数据之间的相关性分析[J].地理研究,2005,24(3):473-479. 被引量:35
  • 3王瑞辉,马履一,奚如春.城市森林规划的指导原则[J].林业资源管理,2005(2):38-42. 被引量:17
  • 4赵时英.遥感应用分析原理与方法[M].北京:科学出版社,2003.166-277.
  • 5吴征镒 朱彦丞.云南植被[M].北京:科学出版社,1987..
  • 6李海涛,顾海燕,张兵,高连如.基于MNF和SVM的高光谱遥感影像分类研究[J].遥感信息,2007,29(5):12-15. 被引量:31
  • 7Charaniya A P,Manduchi R,Lodha S K.Supervised parametric classification of aerial lidar data[C]//Computer Vision and Pattern Recognition Workshop,2004.CVPRW'04.Conference on.IEEE,2004:30-30.
  • 8Kobayashi § S,Sanga-Ngoie K.A comparative study of radiometric correction methods for optical remote sensing imagery:the IRC vs.other image-based C-correction methods[J].International Journal of Remote Sensing,2009,30(2):285-314.
  • 9Mountrakis G,Im J,Ogole C.Support vector machines in remote sensing:A review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(3):247-259.
  • 10Goodenough D G,Chen H,Dyk A,et al.Data fusion study between polarimetric SAR,hyperspectral and LiDAR data for forest information[C]//Geoscience and Remote Sensing Symposium,2008.IGARSS 2008.IEEE International.IEEE,2008,2:II-281-284.

共引文献143

同被引文献136

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部