摘要
针对传统粒子群算法在移动机器人路径规划过程中早熟引起的局部最优问题,将运动过程预测思想集成到粒子群优化算法中,构造神经过程-粒子群混合算法。主要思路是在粒子群个体进行下一次迭代时,利用神经过程预测个体位置,增加了迭代后期粒子群体的多样性,避免过早陷入局部最优,从而提高算法优化能力。实验结果显示,改进算法用于解决机器人路径规划问题,整体性能优于传统的粒子群优化算法。
Aiming at the local optimal problem caused by precocious particles in the path planning process of mobile robot by traditional Particle Swarm Optimization(PSO)algorithm,a hybrid neural process-PSO algorithm was constructed by integrating the idea of motion process prediction into PSO.The main idea is that in the next iteration of particle swarm individuals,the neural process is used to predict the individual location,increase the diversity of particle swarm at the later stage of the iteration,and avoid falling into local optimization too early,so as to improve the optimization ability of the algorithm.The improved algorithm is used to solve the robot path planning problem.The experimental results show that the proposed neural process-particle swarm optimization(PSO)has better path planning ability and better comprehensive performance than the traditional PSO.
作者
马烨
王淑青
毛月祥
MA Ye;WANG Shuqing;MAO Yuexiang(School of Electricaland Electronic Engineering,Hubei Univ.of Tech.,Wuhan 430068;StateGrid Hubei Electric Powerco LTD,Wuhan430068)
出处
《湖北工业大学学报》
2020年第1期17-20,共4页
Journal of Hubei University of Technology
基金
国家自然科学基金青年基金项目(61603127)。
关键词
路径规划
神经过程
粒子群
预测
path planning
neural process
particle swarm
predict