期刊文献+

基于改进生成对抗网络的红外图像超分辨率重建 被引量:3

Infrared image super-resolution based on improved generative adversarial networks
下载PDF
导出
摘要 由于硬件成本和拍摄条件等限制,很难直接获取高分辨率红外图像。生成对抗网络可以实现红外图像的超分辨率重建,但仍存在训练不稳定,训练时不收敛等不足。针对这些问题,本文使用Wasserstein距离代替KL散度,结合图像间的欧式距离构造新的损失函数,优化原有网络结构和算法流程,使网络更准确地学习低分辨率图像与重建图像的对应特征映射关系,网络训练更加稳定。实验结果表明,重建图像的边缘过渡平缓,目标细节得到有效保证,并获得了更好的客观评价结果。 Due to limitations in hardware and shooting conditions,it is hard to obtain high-resolution infrared images.Generative adversarial networks can achieve super-resolution reconstruction of infrared images,but there are still some shortcomings such as insufficient training and no convergence during training.To deal with these problems,this paper proposes an improved method.The Wasserstein distance is used instead of KL divergence,and the new objective function is constructed by combining the Euclidean distance between images.The network can learn the mapping relationship between the low-resolution image and the reconstructed image more accurately,and the network training is more stable.The experimental results show that the edge transition of the reconstructed image is gentle,the target details are effectively guaranteed,and a better objective evaluation result is obtained.
作者 马乐 陈峰 李敏 MA Le;CHEN Feng;LI Min(Rocket Force University of Engineering,Xi′an 710025,China)
机构地区 火箭军工程大学
出处 《激光与红外》 CAS CSCD 北大核心 2020年第2期246-251,共6页 Laser & Infrared
关键词 红外图像 超分辨率重建 生成对抗网络 深度学习 infrared image super-resolution reconstruction generative adversarial networks deep learning
  • 相关文献

参考文献3

二级参考文献16

共引文献35

同被引文献15

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部