期刊文献+

载波相位平滑时间常数对GBAS精度增强的影响 被引量:1

Influence of carrier phase smoothing time constant on GBAS accuracy enhancement
下载PDF
导出
摘要 陆基增强系统(GBAS)是利用载波相位平滑伪距差分修正实现对导航辅助定位的.其中,平滑时间常数是影响载波相位平滑伪距精度的关键参数.本文分析研究了不同平滑时间下电离层时间梯度和空间梯度对Hatch滤波的影响.在结合电离层时空梯度和多径效应引起的滤波总误差方差的基础上,推导出自适应的最优平滑时间常数.分别对GBAS静态和动态两种环境下的定位误差进行实验,实验结果表明,采用本文推导出的自适应平滑时间常数降低了GBAS伪距测量误差,从而使定位精度得到增强. The Ground Based Augmentation System(GBAS) uses carrier phase smoothing pseudorange differential correction to achieve navigation aided positioning. The smoothing time constant is a key parameter affecting the accuracy of carrier phase smoothing pseudorange. To analyze the effects of ionospheric time gradient and spatial gradient on Hatch filtering under different smoothing times. Based on the analysis of the total error variance of the filtering caused by the ionospheric time-space gradient and multipath effect, the adaptive optimal smoothing time constant is derived. The positioning errors of GBAS static and dynamic environments are tested respectively. The experimental results show that the adaptive optimal smoothing time constant reduces the GBAS pseudorange measurement error, which enhances the positioning accuracy.
作者 倪育德 陈楚佳 NI Yude;CHEN Chujia(College of Electronics and Automation CAUC,Tianjin 300300,China;Key laboratory of Civil Aircraft Airworthiness Technology,CAAC,Tianjin 300300,China)
出处 《全球定位系统》 CSCD 2020年第1期43-50,共8页 Gnss World of China
基金 国家重点研发计划项目(2016YFB0502402)。
关键词 GBAS 平滑时间常数 电离层时空梯度 HATCH滤波 定位误差 GBAS smoothing time constant ionospheric time-space gradient Hatch filtering positioning error
  • 相关文献

参考文献4

二级参考文献53

  • 1薛瑞,张军,朱衍波.局域增强系统级联双频平滑技术研究(英文)[J].Chinese Journal of Aeronautics,2009,22(1):49-55. 被引量:6
  • 2Datta-Barua S, Waiter T, Pullen S, et al. Using WAAS ionospheric data to estimate LAAS short baseline gradients. Proceedings of ION National Technical Meeting. 2002; 523-530
  • 3Yun D, Kee C. Single-frequency differential GPS accuracy improvement via local area ionospheric time delay model development. Telecommunications Review 1999; 9(1): 122-130.
  • 4Klobuchar J A. Ionospheric effects on GPS. In: Parkinson B W Spilker Jr. J J, editors. Global Positioning System: Theory and Application, Progress in Astronautics and Aeronautics. Washington D. C.: AIAA, 1996; 485-515
  • 5Hatch R. The synergism of GPS code and cartier measurements. Proceedings of 3rd International Symposium on Satellite Doppler Positioning. 1982; 2: 1213-1232.
  • 6Walter T, Datta-Barua S, Blanch J, et al. The effects of large ionospheric gradients on single frequency airborne smoothing filter for WAAS and LAAS. Proceedings of ION National Technical Meeting. 2004; 103-109.
  • 7Komjathy A, Sparks L, Mannucci J A. The ionosphere impact of the October 2003 storm event on WAAS. Proceedings of ION GPS. 2004; 1298-1307.
  • 8Luo M, Pullen S, Walter T, et al, Ionsphere spatial gradient threat for LAAS: mitigation and tolerable threat space. Proceedings of ION National Technical Meeting, 2004; 490-501.
  • 9Luo M, Pullen S, Ene A, et al. Ionsphere threat to LAAS: updated model, user impact, and mitigation. Proceedings of ION GNSS.2004; 2771-2785.
  • 10Luo M, Pullen S, Dennis J, et al. LAAS ionosphere spatial gradient threat model and impact of LGF and airborne monitoring. Proceedings of ION GNSS. 2003; 2255-2274.

共引文献29

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部