期刊文献+

2类图完美匹配数目解析式的嵌套递推求法

The Nested Recursive Method of Analytic Formula of the Number of Perfect Matchings for Two Types of Graphs
下载PDF
导出
摘要 完美匹配的计数理论在晶体物理学、量子化学和计算机科学中都有重要的应用,对此问题的研究具有非常重要的理论价值和现实意义.但是,一般图的完美匹配计数问题已经被证实为NP—难问题.本文用划分、求和、再嵌套递推的方法给出了2类特殊图完美匹配数目的显式表达式,为图的完美匹配问题的应用提供了理论支持. It’s important apply for perfect matching counting theories in crystal physics,quantum chemistry and computer science.The research for perfect matching countings has a quite important theoretical value and realistic meanings.However,the counting problem of perfect matchings for general graphs has been proved to be NP-hard.In this paper,by applying differentiation,summation and re-nested recursive calculation,several counting formulae of the perfect matchings for two specific types of graphs are given.Therefore,this provides the theory support for the application of perfect matching in graphs.
作者 唐保祥 任韩 Tang Baoxiang;Ren Han(School of Mathematics and Statistics,Tianshui Normal University,Tianshui 741001,China;Department of Mathematics,East China Normal University,Shanghai 200062,China)
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2020年第1期1-4,共4页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(11171114)。
关键词 完美匹配 线性递推式 特征方程 perfect matching linear recurrence relation characteristic equation
  • 相关文献

参考文献9

二级参考文献66

  • 1林泓,林晓霞.若干四角系统完美匹配数的计算[J].福州大学学报(自然科学版),2005,33(6):704-710. 被引量:29
  • 2Bondy J A, Murty U S R. Graph theory with application[M]. New York: Macmillan Press, 1976.
  • 3Brightwell G R, Winkler P, Hard Constraimts, et al. Adventures at the interface of combinatorics and statistical physics[J]. ICM,2002, Ⅲ: 605 - 624.
  • 4Lovasz L, Plummer M. Matching theory[M]. New York:North- Holland, 1980.
  • 5Kasteleyn P W. The number of dimer arrangements on a quadratic lattice[J]. Physica, 1961(27): 1209 - 1225.
  • 6Kasteleyn P W. Dimer statistics amd phase transition[J]. J Math Phys, 1963(4): 287 - 293.
  • 7Pachter L. Combinatorial approaches and conjectures for 2 - divisibility problems concerning domino tilimgs[J]. The Electon Journal of Combinatorics, 1997(4): 29.
  • 8Propp J. Enumeration of matchings: problem and progress[A]. In: Billera L, Bjorner A, Greene C, et al. New perspectives in Geometric Combinatorics[C]. Combridge: Combridge University Press, 1999. 255- 291.
  • 9Ciucu M. Enumeration of perfect matchings in graphs with reflective symmetry[J]. J Combin Theory Ser A, 1997, 77:87 - 97.
  • 10Ciucu M. A complmentation theorem for perfect matchings of graphs having a cellular completion[J]. J Combin Theory Ser A,1998, 81: 34-68.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部